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ABSTRACT 

In this paper we describe an automated planning 
system that selects the optimal target location to drop 
a communication node in an unknown cave 
environment to maximize communication coverage 
while minimizing the risk of violating safety 
constraints for all robots traversing the area based on 
local environmental and operational constraints. 

1 INTRODUCTION 

Planetary subsurface/cave exploration is one of the 
target capabilities in NASA’s Lunar Surface 
Innovative Initiative (LSII) towards enabling human 
and robotic exploration on the Moon, as well as future 
operations on Mars. However, caves offer several 
technological challenges for robotic missions, 
including access, mobility, communication, power and 
autonomy. 

Communication in a cave specifically has a high level 
of uncertainty in the reliability, capacity, and 
availability of the links between robotic explorers. 
Previous theoretical work [1] and preliminary field 
experiments [2] in linear tunnel configurations (e.g., 
Mueller Tunnel) have shown that a cave’s geometry 
can cause large constructive and destructive fading 
effects in communication signals. In the constructive 
case, multiple signal reflections arrive at the receiving 
antenna aligned in phase, significantly increasing the 
signal strength. In the destructive case, these reflected 
signals arrive at the receiver out of phase, thus 
canceling each other out. Experiments showed that the 
transition between constructive and destructive can 
occur with a movement as short as the carrier 
wavelength, 12.5 cm in the case of WiFi. The authors 
of [8] formulate a distributed constraint optimization 
problem and demonstrate how micro movements in 
the order of a wavelength influence the network 
throughput up to 270% in their experimental setup. 

Due to such uncertainty in communications and in the 
environment itself, future planetary subterranean 
missions will increasingly rely on autonomous 
capabilities for building communication infrastructure 
(e.g., repeaters, data stores) and for 

Figure 1:  Simulated Cave Environment. 

placing instruments and sensors (e.g. localization 
beacons, scientific instruments). Autonomy in multi-
robot coordination in particular is a key mission 
enabler that would help robots to create and adapt a 
communication network to connect the robotic team to 
a base station (at the entrance of the cave) while the 
robots map and explore an a priori unknown cave 
environment.  

One promising approach is to allow certain robots to 
drop wireless communication nodes (repeaters) along 
the way during exploration - a technique that has been 
actively used in recent research on robotic 
subterranean exploration such as in the DARPA 
Subterranean Challenge. However, one of the main 
challenges in dropping communication nodes is to 
decide where exactly to drop it to 1) maximize signal 
strength and available bandwidth between the target 
robots in the network given the aforementioned 
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communication link uncertainty while 2) minimizing 
the risk of violating safety constraints as the robot 
approaches the dropping location, and 3) minimizing 
the potential traversability hazards for robots 
exploring the same area. If traversability is not taken 
into account in the multi-robot traversability setting, 
communication nodes can easily become an obstacle, 
or even be damaged by robots driving over them.   

Literature provides several efforts on addressing the 
aforementioned challenge (1), where the problem is 
usually formulated as a geometric coverage planning 
problem [3, 4], and communication-aware motion 
planning [5, 6, 7]. However, to the best of our 
knowledge, there is no technique for positioning 
communication nodes that also aims at a minimum 
disruption in the flow of the crossing robot teams (i.e., 
challenges (2) and (3)).  

In this project we develop a hierarchical planning 
system that includes 1) a global planning approach to 
determine how many communication nodes to drop 
and what segment of the cave to drop them, and 2) a 
local planning to optimize the target placement 
location within a segment and the robot trajectory 
based on local environmental and operational 
constraints. In this paper, we focus on the local 
planning problem, where the system searches and 
determines an efficient target location to drop a 
communication node given a bounded area of the 
environment (e.g. a cave segment) and a set of 
reference nodes in the network (e.g. base station, a 
peer robot or another previously dropped 
communication node). The local planning process 
includes two phases: information gathering and 
placement selection. In the first phase, the robot is sent 
to the specified bounded area for collecting a higher 
resolution map of environment and signal strength 
measurements. The map and signal observation will be 
used to estimate and refine a communication signal 
strength map (SSM) of the local cave segment. Herein, 
the system uses existing stochastic models [1][2] to 
predict and refine the SSM as the robot collects signal 
observations.  In the second phase, we frame the 
selection and path planning processes as an 
optimization problem that takes into account i) an 
estimated SSM of the cave segment, and ii) the 3D 
map of the cave segment to evaluate robot team 
traversability, i.e. the most likely paths and flow.  

We present a prototype of the proposed local planning 
system, including the SSM estimation and the 
optimization process. We show preliminary results 
from simulated multi-robot cave exploration scenarios 
focusing on the selection phase. Figure 1 shows the 
simulated cave environment used to test our approach. 

The top image shows the global view of the entire 
simulated cave and the bottom image shows the robot 
tasked to deploy the communication node and a 
portion of the cave's interior.  
 
2 PROBLEM STATEMENT 

Given a bounded area of an environment (e.g., cave 
segment), a robotic platform capable of carrying and 
deploying communication nodes, a traversability map, 
a communication signal strength map (SSM),  and the 
information about the locations of other 
communication nodes already deployed in the 
environment, we aim to design a solution that allows a 
robot to autonomously select an optimal location to 
place a new communication node within that bounded 
area that both 1) maximizes the local signal coverage 
and 2) reduces the disruption and risk of the robot’s 
operations.  

Consider Q a 2D grid representing the robot’s local 
view of the world. The Traversability Map 𝑇 is a 2.5D 
grid map (see Figure 2), where each cell in this grid 
represents the probability that the corresponding cell 
in Q is traversable by the robot in consideration. The 
traversability map considers positive (walls, rocks), 
negative obstacles (holes, cliffs) and other features 
found in cave terrain (e.g., steep slopes) [9], and cave 
areas not yet explored are labeled as unknown. We 
define the Obstacle Space 𝑂 ⊂ 𝑄 the set of grid cells 
whose corresponding probability value in T is zero and 
the Drop Space 𝐷 = 𝑄	 − 𝑂, is the set of valid 
positions p where a communication node can be 
placed on Q. The Reference Space 𝑅, subset of ℝ2, 
contains the locations of the communication nodes 
already placed in the world, which is used to compute 
the signal strength map SSM. 
The objective is then to use this information to allow 
the robots to autonomously select a location 𝑝∗ 	 ∈ 𝐷 to 
place a communication node that satisfies both 
desiderata 1) and 2). 
 
3 LOCAL PLANNING APPROACH 

In this section, we describe the two phases of our 
approach, information gathering and placement 
selection, and the operation restriction regarding 
deployment. 

3.1 Information Gathering 

It is expected that the given bounded area of the 
environment, that the robot is tasked to deploy a node, 
is not fully known in advance. Thus, gathering more 
information about traversability and communication 
constraints is key for an effective communication node 
deployment. 
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The first phase of the proposed local planning 
approach consists of planning the path to a given, 
location/cell 𝑝0 ∈ 𝐷 (provided by the global planning 
process) within the bounded area, we call 𝑝0 as the 
query location. From that location, the robot performs 
coverage path planning  to execute a motion pattern, 
or any combination of patterns, for no more than a 
predefined time threshold - herein, we consider a 
library of motion patterns (e.g. zig-zag, spiral, random 
walk, wall follow) [12]. Determining the specific 
patterns to be executed in order to increase 
information gathering is out of the scope of this paper.  

As the robot performs the motion patterns, it 
constructs and refines the traversability map T. It also 
collects signal strength readings from the existing, 
previously deployed communication nodes. The 
information/data gathered during this phase is used as 
the input to the selection process as follows. 

The location 𝑝0 is optimized based on the objectives of 
the mission, and therefore, we want the robot to deploy 
the communication node near 𝑝0. We restrict the 
placement location to be within a predefined distance 
𝑑" = 10m away from 𝑝0. Accordingly, we also restrict 
the information gathering to collect data within 10m of 
𝑝0. 

3.2 Selection 

We formulate the placement selection problem as a 
discrete multi-objective optimization. A criterion 
vector is assigned to each cell in 𝐷 and it is used as the 
criterion for selection (the set of criteria used in this 
project is described later in this section). Consider C 
to be the set of criterion vectors in ℝ2 such that𝐶 =
{𝑐 ∈ ℝ!: 𝑐 = [𝑐1(𝑝), 𝑐2(𝒑)]|𝑝 ∈ 𝐷}. We use Pareto 
Optimality [11] to reduce the set of valid placement 
locations by eliminating locations from 𝐷that are sub-
optimal. A placement location is eliminated if there is 
another placement location that has a better score𝑐#in 
one criterion and at least the same score in the others. 
We compute the Pareto Optimality as: 

𝐴(𝐶) = {𝑐′ ∈ 𝐶: {𝑐′′ ∈ 𝐶: 𝑐′′ ≻ 𝑐′, 𝑐′′ ≠ 𝑐′} = 0}. 

𝐴(𝐶) maps D to a refined subset of the drop space 
𝐷∗ ⊂ 𝐷 where all the elements are equivalent 
according to our selection criteria. 

We design our criteria based on the following desired 
behaviors of our problem. 

3.2.1. Maximize signal strength and coverage:  

To enable global mission planning and real time risk 
management, it is desirable for the robots to maintain 
reliable communication links with the base station for 
most of the duration of the mission. There are two 
objectives to  be considered  here:  1) maintain  signal 

 

  
Figure 2: Top image: Traversability map; unknown 

cells are red, obstacle cells are black and the 
traversable cells are in shades of gray  Bottom left 

image: Traversability map augmented to depict areas 
with communication coverage; the cells in yellow 
color have SNR > 37 dB.  Bottom right image: 
distance transform (higher distance values are 

brighter than lower distance values) 

coverage uninterrupted with previously deployed 
nodes and explored regions; 2) maximize signal 
quality/strength with other comm nodes in the network 
(including base station); and 3) to maximize the local 
signal area covered by the node to be placed.  

We use a probabilistic communication model derived 
for linear tunnel environments [2] that relates the  
distance between two communicating nodes 
(transmitter and receiver) to signal to noise ratio 
(SNR). In such a model, if the distance between 
transmitter and receiver is greater than 20 m, the SNR 
maps to a value ≤ 37 dB, whose estimated bandwidth 
(BW) is ≤ 1Mbps. Hence, in this paper we assume that 
if a cell in Q has SNR ≤ 37 dB, it does not have enough 
bandwidth for effective communication. Figure 3 
shows in yellow the area covered by a communication 
node already placed/deployed. 

A cell p whose SNR value is in the interval (0 ,37], is 
in the transition from a covered to an uncovered area 
communication-wise. Therefore, to maintain 
uninterrupted communication, it is desirable that a 
large part of these transition cells are covered by the 
communication node to be placed/deployed.  
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We design the criterion 𝑐1based on how many 
transition, uncovered and covered cells are reached by 
the new communication node: 

 
such that: 

 
The above criterion allows us to focus on areas/cells 
that do not yet have good signal and avoid those that 
already have good signal/coverage. 

3.2.2. Reduce risk of disruption in robot’s operations:  

Random or poorly planned placement locations, such 
as placement in narrow corridors or in regions that are 
frequently visited by other robots, will force their 
path/motion planners to either reduce the speed at 
which robots are navigating while in these regions to 
avoid collision with the communication nodes or to 
change their trajectory completely to a possibly less 
efficient one, if, luckily, one exists. To prevent these 
issues,  we formulate the criterion 𝑐2atop the concept 
of Distance Transform (DT) [10]. In our application, 
the distance transform maps each free (non-obstacles) 
cell into its distance to the nearest obstacle cell 𝑂 ⊂Q. 
In Figure 3, we have the traversability map 𝑇 in the top 
image and its corresponding distance transform map in 
the bottom right image - higher distance values are 
brighter than lower distance values. Narrow corridors 
are darker compared to open areas since, for each 
position p in a corridor, the distance to the closest 
obstacle is shorter than in open areas. Therefore, we 
use DT as one of the selection criteria:  

𝑐2(𝒑) 	= 	𝐷𝑇(𝑝), 

where:  

𝐷𝑇(𝑝) = 𝑚𝑖𝑛{𝑑(𝑝, 𝑜)	|	𝑝	 ∈ 𝑄, 𝑜	 ∈ 𝑂}.  

3.2.3. Selection method:  

The refined set 𝐷∗, result of applying Pareto 
optimization using 𝑐1and 𝑐2and then contains a set of 
good deployment locations. Because of 𝑐1, many of the 
deployment locations lie in areas often visited/used by 
other robots (which is undesired). If we can find more 
than one 𝑝	 ∈ 	𝐷∗ whose distance to a wall is lesser 
than 0.5 m, we select 𝑝∗ as the one closest to 𝑝0. If no 
𝑝	 ∈ 	𝐷∗is close to the wall, we project all the points 

 
1 DARPA SubT Tech Repo: 
https://www.subtchallenge.world/openrobotics/fuel/c
ollections/SubT%20Tech%20Repo  

in	𝐷∗to their closest wall and, as before, select 𝑝∗ as 
the one closest to 𝑝0. 

3.3 Deployment 

The location 𝑝∗ is finally used to place a new, 
stationary, communications node. Herein, the robot 
plans its path from its current location (i.e. the end 
location of the information gathering phase) to the 
selected location 𝑝∗. When the robot is located at  𝑝∗, 
it performs the comm node deployment behavior.  
 
4 EXPERIMENTAL RESULTS 

We focus our preliminary experiments on 
demonstrating the adaptability of our selection method 
and understanding its limitations. A thorough analysis 
of the proposal local planning system with respect to 
all the phases is left for future work.  

We use a set of comm node deployment scenarios in a 
simulated 3D cave environment to test the feasibility 
of the proposed selection process. Herein we used a 
synthetic cave model from DARPA Subterranean 
Challenge repository (SubT Tech Repo).1 For each 
scenario we set 𝑝0 (query), illustrated as a red dot in 
Figure 3, top image, and run our selection algorithm to 
select the target 𝑝∗drop location, illustrated as a green 
dot in Figure 3, top image. The blue circle represents 
the distance restriction 𝑑" = 10m from 𝑝0. After 
selection is completed, we run the robot’s comm 
deployment behavior to move the robot to 𝑝∗and drop 
a comm node. Figure 3, bottom image, shows the 
communication node on the ground (indicated by the 
yellow arrow) deployed by the simulated robot. 

Figure 4 shows four representative scenarios and 
depicts the results from the selection method. In the 
top image, the query node is far from the region 
covered by any element from reference space 𝑅, hence 
the optimization is equivalent to simply select a 
location that maximizes 𝑐2. In the second image (top-
down), the bounded region starts exactly in the 
transition between the covered and uncovered regions 
with respect to communication signal, hence, criteria 
𝑐1 and 𝑐2are equally determining the optimized 
location. In the third image, the query node is inside a 
covered area, leaving very little space for 
optimization. Finally in the bottom image, there is no 
space for optimization, and the drop location is set to 
be in the very limited location that is not already 
covered. 
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Figure 3: Communication node deployment, 

including the selection process (top) and simulated 
deployment of comm node (bottom). 

A very simple modification in our approach, that have 
potential to a large improvement in performance is to 
allow the robot to explore the environment beyond 𝑑" 
and suggest a target segment based on the local 
measurements and assessment. This would be very 
useful in cases like the top image of  Figure 4, where 
the robot could search for the transition areas; and in 
the case of the bottom image, where no 
communication node is actually required in the 
bounded region. 

5 CONCLUSION 

In this work we demonstrated autonomy in the 
selection and deployment of communication nodes in 
a simulated cave environment. We describe 
preliminary results obtained from simulated scenarios 
in cave environments to test the feasibility of the 
proposed. 

For future work, we will expand our experiments to 
analyze the performance of the complete local 
planning system, both in simulation and in real cave  

 

 

 

 
Figure 4: Deployment scenarios with the respective 
selected locations (green dots) and initial queries 

(red). 
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environments. We will look into using signal strength 
map models that consider complex, non-linear cave 
structures. Investigating methods to refine/adapt such 
models online based on measured communication 
signals during information gathering phase (and 
during exploration in general) is also a promising and 
key direction. Furthermore, multi-robot control 
algorithms and resiliency aspects in evolving multi-
robot networks [13] (e.g., failing robots and 
communication nodes) can be combined with this 
approach in future works. 
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