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ABSTRACT 

A traditional approach to space debris mitigation is the 
removal and de-orbiting of debris. We propose a novel 
approach which involves in-situ resource utilization of 
salvaged debris for re-use as a development of on-orbit 
services. This could be regarded as a more sustainable 
approach to space debris control. Only robotic 
manipulation is flexible enough to deal with both large 
and small debris unlike harpoons and nets which 
generate complex uncontrollable dynamic interactions 
between the robotic free-flyer, the target and the 
flexible umbilical connecting the two. This favors 
space debris mitigation through the deployment of 
free-flyer spacecraft mounted with dexterous 
manipulators which provide controlled interaction 
with the target [1]. Robot manipulators have been the 
workhorse of industrial applications for a range of 
tasks where precision positioning is required including 
machining, welding, sanding, spraying and assembly. 
Debris mitigation will require robust robotic grasping. 
Currently, most approaches to tactility in robotic 
grasping rely on either significant processing 
resources or soft robotics. There is little doubt that 
robust and adaptable robotic grasping would be a boon 
in both orbital debris removal and on-orbit servicing 
[2]. 

We propose here a novel bio-inspired error-learning 
approach to manipulator control that specifically 
addresses the requirement for adaptability and 
compliance to a range of dynamic tasks under dynamic 
environmental conditions. We propose to solve this 
problem by accommodating a different payload inputs 
and a force control model in the error learning 
algorithm. To avoid unreliable predictions for 
robustness, the error learning models of the robotic 
manipulator were trained on data accounting for 
possible perturbations and different payloads.  We 
have introduced a task specific model that is able to 
learn from its errors (make error predictions) under 
different payloads and varying environmental 
dynamics, to accommodate space debris removal of 
varying sizes. This is entirely different to model 

predictive control. For now, we present here, a two-
layer approach to grasping: (i) hybrid force/impedance 
control through feedback, which is the traditional 
approach - but delays in the feedback cycle can 
generate instabilities; (ii) the addition of a feedforward 
predictive capability to partially circumvents this 
problem by emulating the function of the human 
cerebellum (effectively, a Kalman filter-based neural 
network). Essentially, we have developed appropriate 
neural net models for varying sizes of payloads and 
dynamics – using models of the 7 degrees-of-freedom 
Barrett Arm. 

 

1 INTRODUCTION 

For the control of spaceborne manipulators required 
for grappling space debris targets, modeling the force 
control to achieve adaptable and compliant behavior is 
a major obstacle hindering the deployment of robotic 
free-flyers for such a critical task. Previously explored 
avenues for achieving reactive and compliant 
behavior, for manipulators in general, is the 
representation of motions through acceleration-based 
control. Acceleration policies can typically support the 
realization of real-time, adaptive, and complaint 
robots. However, tracking acceleration is only feasible 
when we do have an accurate model of the inverse 
dynamics of the system. This poses a challenging task 
as we do not know how to accurately change the 
robot’s state in dynamic environments or under 
dynamic tasks. With no precise or single-task model 
of the systems dynamics, we usually resort to tracking 
desired trajectories by integrating the acceleration 
policy while deploying feedback control to reject the 
modeling errors of the dynamics. This in turn presents 
a trade-off between the compliancy and reactiveness 
of our controller against accuracy, as effort is being 
made to tune the gains (higher) to achieve good 
tracking performance. For the purpose of space debris 
removal (salvaging) and/or on-orbit servicing, robotic 
free-flyers’ regimes of operations will include free-
space motion, transitional contact dynamics, 
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transitional passivation of target, and some servicing 
operations such as peg-in-hole task. Therefore, it will 
be required to perform mixed mode position and force 
control covering these tasks, but with the aim to 
achieve reactive and compliant behaviour. In order to 
achieve this, it has been proposed that models should 
instead be learned online using streams of sensory 
data, in a process where it can infer the characteristics 
of its structure and environment. Considerable effort 
has been put into developing machine learning 
methods that can learn and improve inverse dynamics 
model [3-6]. Online learning has been the focus in 
these settings because when considering motions with 
object interactions, learning one global model 
becomes very challenging, if not impossible, since the 
model must be a function of contact and payload 
signals. To approach the issue of global/dynamic 
model, learning task-specific (error) models has been 
proposed in the past [7-10], such that the overall global 
problem is simplified into two subproblems – (1) 
finding a task-specific inverse dynamics model and (2) 
detecting which task model to use. This permits to 
iterate the collection of data specific to a task, learn an 
error model, and then apply the learned model during 
the required task execution. However, a key difficulty 
that has been encountered is the computationally 
efficient learning of models that are data-efficient as 
possible, such that only few iterations are required 
while achieving consistent convergence in the error 
model learning. One major challenge to (online) 
inverse dynamics learning is computational efficiency, 
especially more so when it comes to space application. 
We seek to address this using predictive feedforward 
approach, in a pre-learned fashion, ensuring a more 
compliant and reactive robot. Our take on this is that 
pre-learned input-output models are computationally 
efficient compared with analytical models – the latter 
require exact knowledge of parameters (commonest 
sources of errors which include payload variation) and 
require computation time. Learned models reduce 
computation by storing model in memory. Increased 
gains increase the control effort and the tendency to 
instability.    

 

2 CHALLENGES WITH PAST LEARNING 
APPROACHES 

One major challenge to online inverse dynamics 
learning is computational efficiency, especially more 
so when it comes to space application. Predicting with 
learned models needs to be feasible within the real-
time constraints of the systems consuming torque 
commands.  

Another major challenge to the traditional inverse 
dynamics learning is that increasing the gains of the 
feedback control in an attempt to circumvent extreme 
cases of bad tracking does not only affect compliancy; 
but  also, no useful data of inverse dynamics model 
learning would be generated because the collected data 
points will be slightly off the desired trajectory for 
which we aim to deduce the inverse dynamics model. 
An alternative approach was presented in a recent 
work [11], where a direct loss function was employed 
to minimize the error between the desired and actual 
accelerations, to learn the feedback terms online. In 
this study [11], the idea was that feedback control 
could be viewed as an online technique to compensate 
for errors in a given a priori inverse dynamics model. 
The feedback terms compensate for errors between 
what a given model predicts (estimates) and what is 
actually obtained. As such, they naturally act as a 
convenient source of training data. In a further study 
[12], it was shown how the direct loss on accelerations 
as presented in [11] can be transformed into a loss on 
inverse dynamics torques, measured at desired 
accelerations as against at actual accelerations. It was 
shown in [12] how the combination of these two data 
sources (training data points measured at actual 
acceleration and the training data source measured at 
desired acceleration) leads to more consistent 
convergence and often faster learning convergence of 
a task-specific inverse dynamics learning process. 
However, this study was only carried out for a single 
task or a task-specific case. A major limitation of the 
study [12] was that the input of the error model does 
not account for any information of the payload term, 
and such a system would lead to data ambiguities (not 
being able to separate payload contained/driven data 
from non-payload driven data). As cited as example, 
picking up a tool from a position, placing it somewhere 
else and repeating the pickup without the tool could 
not be expressed by a single task-specific inverse 
dynamics model for now. Furthermore, in the study 
[12], it was not analyzed how the system performs 
when it is strongly perturbed. And this could result in 
undesirable predictions since the error model has not 
been trained on any data for that input space. This has 
been a general problem for task specific models. 

 

3 BIOMIMETIC APPROACHES TO ROBOT 
MANIPULATION 

Compliant manipulation is a major constraint for 
grappling in robotic manipulators. The goal is to 
reproduce human level manipulation capabilities – it 
would be necessary then to examine human 
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manipulation from a biomimetic standpoint. The 
problem in introducing robots into the wider world has 
not been their intelligence but their ability to 
physically interact with the world. Robust adaptive 
manipulation is the key to converting space junk into 
salvageable assets for re-use. Key facets to bio-
inspired approaches to engineering are robustness and 
adaptability [13]. It is believed that biomimetic 
approaches could provide this capability. A tutorial 
review of this approach to robotic manipulation has 
been presented, emphasising the central role played by 
manipulator control systems [14]. 

Sensorimotor control is the primary function of the 
brain for which several strategies are employed [15]: 
(i) sensorimotor planning, learning and control; (ii) 
optimal feedback control, (iii) impedance control, (iv) 
predictive control, and (v) Bayesian inferencing. 
According to [14], “In the human brain, the primary 
motor cortex and supplementary motor area encode 
adaptation of kinematic-dynamic transformations of 
movements. Voluntary movement requires three main 
computational processes to be implemented in the 
brain: (i) determination of cartesian trajectory in visual 
coordinates; (ii) transformation of visual coordinates 
into body coordinates in which proprioceptive 
feedback occurs (within the association cortex); (iii) 
the cartesian trajectory in body coordinates (joint 
coordinates) d is converted into the generation of 
motor commands  (within motor cortex) to the 
muscles through the spinal cord. Internal models are 
used as neural models of aspects of the sensorimotor 
loop including interaction with the environment to 
predict and track motor behaviour. The primary motor 
cortex (M1) implements inverse models that convert 
desired end effector cartesian trajectories into patterns 
of muscle contractions at the joints (output), i.e. motor 
commands.” These coordinate transformations 
between external world coordinates to joint/muscle 
coordinates appear to be implemented between M1 
and the ventral premotor cortex (PMV) [16]. The first 
mapping that must be achieved is the nonlinear 
transformation of task (cartesian) coordinates of the 
end effector q in terms of joint coordinates θ: 

𝑞 = 𝑓(𝜃)  

where f(θ) = 4x4 Denavit-Hartenburg matrix. This can 
be differentiated to get the cartesian velocities in 
relation to joint velocities through the Jacobian matrix 
J(θ): 

𝑞̇ = 𝐽(𝜃)𝜃̇  

where J(θ) is 6-by-n Jacobian matrix for n degrees of 
freedom. From virtual work reasoning, the transpose 

of the Jacobian relates joint torques τ to the cartesian 
end effector forces F: 𝜏 = 𝐽்𝐹  

If the manipulator is kinematically redundant (i.e. 
n>6), the Moore-Penrose pseudoinverse is the 
generalised inverse: 𝐽∗ = 𝐽்(𝐽𝐽்)ିଵ  

The inverse dynamic representation for a robotic 
manipulator is given by the Euler-Lagrange equations 
illustrating the output torque τ required to attain the 
observable kinematic state of the manipulator joints 
(𝜃, 𝜃̇, 𝜃̈)்: 

𝜏 = 𝐷(𝜃)𝜃̈ + 𝐶൫𝜃, 𝜃̇൯ + 𝐺(𝜃) + 𝐽்𝐹  

where D(θ) is the inertia parameter of the manipulator; 
𝐶൫𝜃, 𝜃̇൯ is the coriolis and centrifugal parameter of the 
manipulator; G(θ) is the gravitational parameter of the 
manipulator (this term vanishes for space 
manipulators); F is the external force at the 
manipulator end effector; and J is the Jacobian matrix. 
The adaptive finite impulse response (FIR) filter may 
be used to approximate inverse dynamic model of a 
process through mean square error minimization [17]. 
Numerous regions of the brain project into motor area 
M1 providing feedback signals – primary 
somatosensory cortex, posterior area 5 and from the 
thalamus via the cerebellum. In feedback control, the 
actual trajectory is compared with the desired 
trajectory, and by this means defining the tracking 
error. This error is fed back to the motor command 
system to allow adjustments to decrease this error. 
Control systems utilize inverse models to calculate the 
desired motor action necessary to achieve the desired 
effects on the environment (such as a desired 
trajectory). The feedback controller calculates the 
motor command based on the error between the 
desired and estimated states. The motor command is 
the sum of feedback controller command and the 
inverse model output. Inverse internal modelling of 
the kinematics and dynamics of motion is like adaptive 
sliding control [18]. The internal model represents an 
observer and essentially represents the reference 
model used in adaptive controllers. An inverse model 
may be produced by inverting a forward model neural 
network representing the causal process of the plant 
[19]. Forward models define the causative relationship 
between the torque inputs and the outputs states of the 
motor trajectory (position/velocity) and the sensory 
states given these estimated states. The parietal cortex 
is concerned with visual control of hand movements - 
it requires ~135-290 ms to process visual feedback 
[14]. It calculates the error between the desired 
Cartesian position and the current Cartesian position, 
the latter calculated from proprioceptive feedback 
measurements from muscle spindles [20]. This needs 
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an efference copy of the motor commands to generate 
a feedforward compensation model. An efference 
copy (corollary discharge) of these motor commands 
is passed to an emulator that models the input-output 
behaviour of the musculoskeletal system. A 
hierarchical neural network model can emulate the 
function of the motor cortex [21]. There is an error 
between the actual motor patterns  (and 𝜃̇) measured 
by proprioceptors and the commanded motor patterns 
 from the motor cortex which is fed back as 𝜃ௗ − 𝜃 
with a time delay of 40-60 ms [14]. A forward 
dynamics model of the musculoskeletal system resides 
within the spinocerebellum-magnocellular red nucleus 
system. The forward model receives feedback from 
the proprioceptors  and an afferent copy of the motor 
command . Thus, the forward model takes motor 
command  as input and outputs the predicted 
trajectory * [14]. The forward model predicts the 
movement * which is used in combination with 
motor command  to calculate a predicted error 𝜃ௗ −
𝜃∗ which is transmitted to the motor cortex with a 
much shorter time delay of 10-20 ms [14]. The forward 
model predicts the sensory consequences of the motor 
commands. This top-down prediction is based on a 
statistical generative model of the causal structure of 
the world learned through input-output relations. In 
humans, this forward model of the musculoskeletal 
system has been learned since the earliest motor 
babbling that begins after birth [14]. An inverse 
dynamics model of the musculoskeletal system exists 
within the cerebrocerebellum-parvocellular red 
nucleus system – it does not receive sensory inputs. 
The inverse dynamics model has the desired trajectory 
d as input from which it computes motor commands 
 as output. The inverse dynamics model must learn to 
match the forward model to generate accurate motor 
commands  in order to compensate for variable 
external forces [14]. The integral forward model 
paradigm places the forward model at the core of all 
perception-action processes – this is the basis for the 
integral forward model in which sensor and motor 
functions are fully integrated [22]. Forward models are 
utilized to make predictions that offer top-down 
expectations to incoming bottom-up sensory 
information. Disparity causes a prediction error that 
prompts refinement of expectations. 

 

4 PREDICTIVE FEEDFORWARD CONTROL 

We are proposing a novel bio-inspired error-learning 
approach that specifically addresses the requirement 
for adaptability and compliance to a range of dynamic 
tasks under dynamic environmental conditions. If we 

could successfully demonstrate this for a terrestrial 
manipulator, the idea is to adopt/modify the approach 
in a free-flyer concept for the removal of space debris 
of varying sizes, offering a salvage solution that is 
robust to any orbital band. In effect, we are proposing 
a three-level control strategy based on biomimetic 
forward models for predictive estimation, traditional 
feedback control and biomimetic muscle-like 
preflexes. We place emphasis on bio-inspired forward 
modelling suggesting that all roads lead to this 
solution for robust and adaptive manipulator control. 
This promises robust and adaptive manipulation for 
complex tasks in salvaging space debris.   

 

Figure 1: The predictive forward model scheme. The 
neural network (“NNet”) model is trained using data 
from experimental teaching mode.  

 

A forward model has been implemented and trained as 
a neural network approximator using some trajectory 
dataset relating the output torque τ gotten from the 
kinematic state of the manipulator joints (𝜃, 𝜃̇, 𝜃̈)் in 
an experimental teaching mode. As shown in Fig. 1, 
the trained neural network model will hence be able to 
take the analytically calculated torque (efference copy 
of input motor commands) as its input, while the 
output of the neural network will be the predicted 
trajectory output (𝜃௙௙ ,   𝜃௙௙

̇ ,   𝜃௙௙
̈ )். This system 

incorporates an inverse model with an adaptive 
feedforward component, i.e., it comprises a 
feedforward and feedback loop. The forward internal 
model of the system dynamics allows prediction of the 
motor system state similarly to a Kalman filter. The 
output of the feedback controller is used as an error 
signal to train the feedforward controller which 
models the inverse dynamics.  The feedback controller 
is essentially a self-tuning adaptive controller/sliding 
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controller while the feedforward controller employs a 
gradient descent to minimize the error.  

Significant delays in neural feedback signals from 
sensors make pure feedback strategies improbable, so 
predictive feedforward control is necessary with the 
feedback being used to correct the trajectory. Two 
copies of a motor command are generated by the 
inverse model, the efference copy being passed to the 
forward model to simulate the expected (desired) 
sensory consequences which are then compared with 
actual sensory feedback. The forward predictive 
model is essential for skilled motor behaviour – it 
models how the motor systems respond to motor 
commands. In the forward model, motor commands 
are input to be converted into their sensory 
consequences as the output – they model the causative 
relationship between input actions and their effects on 
the environment as measured by the sensors. The 
forward internal model behaves as a simulator of the 
body and its interface with the environment, i.e. it 
represents a predictor. 

The forward dynamic model of a robotic manipulator 
is given by (for the sensory joint acceleration rate): 

𝜃̈ = 𝐷ିଵ(𝜃)[𝜏 − 𝐶൫𝜃, 𝜃̇൯ − 𝐺(𝜃)]  
Joint acceleration 𝜃̈ could be integrated to yield joint 
velocity rate 𝜃̇ and joint rotation 𝜃 as the predicted 
output sensory states for torque input τ. The predictive 
forward dynamic model mimics the body’s muscular 
nature which produces a predicted trajectory output 
from an efference copy of input motor commands [23]. 
Feedforward control consequently uses a model of the 
plant process to predict its response to disturbances so 
as to compensate for time delays [24]. The predicted 
trajectory output may be supplied to the input of the 
feedback controller to compensate for time delays – 
Figure 1. Forward models adapt 7.5 times more 
quickly than inverse models alone [25]. This forward 
predictive control scheme has been recommended as a 
model of cerebellar learning from proprioceptive 
feedback from muscle spindles and Golgi apparatus 
which measure muscle stretch. The forward model 
may be executed as a neural network function 
approximator to the forward dynamics. This could be 
represented as a look-up table weights learned from 
input-output pairs of visuomotor training data (in an 
offline, pre-trained fashion). 

The forward model utilizes an efference copy of the 
motor command as input to cancel the sensory effects 
of movement. The same process cancels the effects of 
self-motion on sensation to distinguish from 
environmental effects (e.g. self-tickling). For each/any 

forward model, there is a paired inverse model to 
generate the required motor command for that context 
dictated by sensory signals. In motor control, the full 
internal model encompasses a paired set of forward 
and inverse models involving two network pathways 
through an inverse model and forward model 
respectively, with the latter working as a predictor. 
The feedback controller transforms desired effects into 
motor commands while the feedforward predictor 
transforms motor commands into anticipated sensory 
consequences.  

Multiple paired forward and inverse models would be 
crucial to handle the large number of kinematic-
dynamic situations that could possibly arise. 

5 RESULTS - PREDICTIVE FEEDFORWARD 
MODEL  

We present here the results of the predicted 
feedforward model. The significance of the result is to 
demonstrate how we have developed neural network 
models which are capable of predicting (to a high 
degree of accuracy) forward trajectory variables 
(𝜃௙௙ ,   𝜃௙௙

̇ ,   𝜃௙௙
̈ ) from an efference copy of the torque, 

as shown in Figure 1. It means the models are poised 
to cancel the sensory effects of the arm movement, 
providing anticipated sensory consequences from the 
motor command. With this, instabilities that could 
arise in delays when using traditional feedback cycle 
has been partially circumvented. This is akin to how 
the human cerebellum functions as discussed in 
Section 3. 

Here, we adopt a dataset publicly made available by 
[26], where the WAM Barrett Arm was taken by the 
end-effector and guided along several trajectories in a 
teaching mode. During the imagined motion, the joint 
trajectories (𝜃, 𝜃̇, 𝜃̈) were sampled from the robot and 
the corresponding motor torques (𝜏) measured for 
each data point. The dataset has a total of 12,000 
samples. For the 7 degree-of-freedom Barrett arm, 7 
motor torques were measured, along with 21 joint 
trajectory variables representing seven joint angles 
(𝜃), seven joint velocities (𝜃̇) and seven joint 
accelerations (𝜃̈). 

Deep learning neural network models were developed, 
and we learned the forward dynamics model by using 
the joint torques as input and the joint trajectories as 
targets. The deep learning algorithm developed is of 
multiple-target prediction, under multiple output 
regression. For a feature vector x, we aim to predict 
accurately a vector of responses y using a function 
h(x): 
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𝒙 = ൫𝑥ଵ, 𝑥ଶ, … , 𝑥௣൯  
௛(௫)
ሳልሰ  𝒚 = (𝑦ଵ , 𝑦ଶ, … , 𝑦௠) 

Some of the main challenges is the appropriate 
modeling of target dependencies between targets 
𝑦ଵ, 𝑦ଶ, … , 𝑦௠, and having a multitude of multivariate 
loss functions defined over the output vector, 
ℒ(𝑦, ℎ(𝑥)). The independent features were used to 
train each set of targets grouped separately by the joint 
angles, joint velocities, and the joint accelerations. 
Meaning three different models with different 
hyperparameters were trained (learned), in an attempt 
to manage target dependencies. The first model relates 
the 7 joint torques as input to the 7 joint angles as 
targets; the second model was learned between the 7 
joint torques as input and the 7 joint velocities as 
targets, while the third model learned the relationship 
between the 7 joint torques as input and multiple-
target prediction of the 7 joint accelerations as the 
output. The neural network algorithm was written in 
Python, while some keras and scikit-learn packages 
were used. Below, we present a table of results 
comparing the predicted feedforward joint angles to 
some known joint angles separated as test set from the 
dataset. A similar table of results is shown for the joint 
velocity targets, for a sample data point. 

Table 1: Prediction Accuracy of Joint Angles 

Joint 
Number 

Joint Angle 
(rad) 

Test Set 

Joint Angle 
(rad) 

Predicted 

Accuracy 

(%) 

1 0.0734 0.0669 91.1 

2 0.5349 0.5777 92.6 

3 0.0126 0.0110 87.3 

4 1.5386 1.5781 97.4 

5 0.2453 0.2315 94.4 

6 0.0555 0.0528 95.2 

7 0.0994 0.0957 96.3 

 

Table 2: Prediction Accuracy of Joint Velocities 

Joint 
Number 

Joint 
Velocity 
(rad/s) 

Test Set 

Joint 
Velocity 
(rad/s) 

Predicted 

Accuracy 

(%) 

1 0.0445 0.0403 90.5 

2 -0.1626 -0.1533 94.3 

3 -0.1239 -0.1106 89.3 

4 -0.0793 -0.0812 97.7 

5 -0.0153 -0.0147 96.0 

6 0.0459 0.0435 94.7 

7 -0.03104 -0.0296 95.3 

 

With the prediction accuracy of between 87-98%, it 
can be seen that our models compared favorably to the 
expected predictive feedforward, and it is able to 
provide anticipatory sensory consequences from the 
motor command. Instabilities that could arise in delays 
from using traditional feedback can be partially 
circumvented, an important step in our biomimetic 
approach to developing Kalman filter-based neural 
network models for varying sizes of payloads and 
dynamics. 

 

6 CONCLUSION AND FUTURE WORK 

With the predictive neural network models showing 
promising results, part of the future work is to use the 
efference (analytical dynamics) torque on the models 
to generate the feedforward trajectory variables fed 
into the feedback controller – Figure 1. The resulting 
torque will be used to drive the robot and comparative 
analysis will be made between the response of the 
robot in comparison to what is obtained in the 
traditional approach. Along with this predictive 
feedforward model (which will incorporate hybrid 
force/impedance control), we intend to implement a 
software-based viscoelastic response to the electric 
motors to emulates muscle/tendon behaviour toward 
providing robustness to grappling errors. This shall 
equally involve the implementation of neural net 
models embedded in a Bayesian gating algorithm that 
demonstrates the proper selection of the right neural 
net model for varying sizes of payloads – using 
terrestrial Barrett Arm. Following an anticipated 
success, we shall incorporate this into our knowledge 
of robotic free-flyers dynamics to demonstrate 
viability for space application for debris removal and 
on-orbit servicing. 
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