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ABSTRACT 

Exploration UAVs (Unmanned Aerial Vehicles) are 

required to fly autonomously, because GPS cannot be 

used on Mars. Hence, localization is one of the major 

topics to be developed. In general, visual odometry is 

available for relative position estimation. However, it 

is difficult to estimate absolute position. This paper 

deals with a path planning in consideration of the ab-

solute localization. This paper introduces Mutual In-

formation for image matching, which is robust to 

scene changes. MCL (Monte Carlo Localization) is 

applied for the absolute localization. Then, this paper 

proposes a new RRT (Rapidly-exploring Random 

Tree) extension method to generate a path with a large 

effect of the absolute localization. The simulation re-

sults show that the proposed method reduces the un-

certainty of the position and generates a path that can 

increase the probability of reaching the goal. 

1 INTRODUCTION 

Planetary exploration by robots has contributed to the 

progressing science [1]. In NASA’s Mars 2020 mis-

sion, Mars helicopter (Fig. 1) demonstration flights are 

planned [2]. Autonomous movement in planetary ex-

ploration has its own challenges. Since GPS cannot be 

used on the surface of the planets, position estimation 

is difficult. Conventional methods for position estima-

tion include Wheel Odometry [3] and Visual Odome-

try (VO) [4]. Mars helicopter is going to use VO. Since 

odometry methods are relative position estimation, po-

sition errors are accumulated. By using the skyline 

matching methods [5], absolute position estimation is 

possible. However, the error is large at several tens of 

meters. Although there are a few image matching 

methods [6] for satellite images and UAV equipped 

camera images, the matching between satellite images 

with few features and UAV images is difficult. There-

fore, it is difficult to exactly reach the goal position 

when moving while simply performing absolute posi-

tion estimation based on the images. In such an envi-

ronment where the position estimation is low accuracy, 

a path planning algorithm considering the absolute po-

sition estimation is required. 

Based on the above discussion, this paper proposes a 

UAV path planning method for improving the 

accuracy of absolute position estimation in the envi-

ronments where position estimation is difficult. In the 

proposed method, RRT [7] is extended under the con-

dition that position uncertainty can be reduced and the 

error of the position estimation is within the allowable 

range. As a result, a path with high position estimation 

accuracy can be generated. 

The contents of this paper are as follows. Section 2 de-

scribes related research. The setting of this research is 

described in section 3. The proposed method is ex-

plained in section 4. Section 5 describes the simulation 

using satellite images. The simulation results are dis-

cussed in section 6. Section 7 gives conclusions and 

future works. 

2 RELATED WORKS 

2.1 Absolute Localization  

An absolute localization is proposed for UAV by im-

age matching based on satellite images [6]. The pro-

posed method uses mutual information between im-

ages is used. This has been shown to be robust to the 

differences between the images. The Monte Carlo Lo-

calization (MCL) is applied to the image matching 

method [8].  

2.2 Path Planning 

So far, there have been no research on path planning 

considering absolute localization for the exploration 

UAVs. The path planning considering VO [9] and the 

path planning aimed at suppressing the uncertainty of 

 

Figure 1:  Mars helicopter [2] 
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relative localization [10] have been proposed for the 

planetary exploration rovers. Regarding the drones, 

the path planning method that consider image features 

have also been studied [11]. These methods cannot 

consider absolute localization in the satellite image. 

The path planning methods considering absolute local-

ization have also been proposed. A path planning 

method considering GPS area and non-GPS area is 

proposed [12]. However, it is not possible to use a 

method such as GPS that can reliably estimate abso-

lute position within the predetermined areas for Mars 

exploration. A path planning method considering ab-

solute localization for the planetary exploration rovers 

is also proposed [13]. The Kalman Filter measurement 

update step is used for absolute localization. There is 

an assumption that the uncertainty can be always re-

duced in the Kalman Filter measurement update step. 

However, when the difference between the satellite 

image and the UAV camera image is large, there is a 

problem that the uncertainty cannot always be reduced 

by the absolute localization based on the images. 

3 PROBLEM SETTING 

3.1 Image Matching Method 

In this paper, MCL is applied to image matching using 

mutual information between images to represent abso-

lute localization. Here, the mutual information be-

tween images will be described. When obtaining the 

mutual information between images, it is assumed that 

the two images are monochrome images of the same 

size. The probability distribution function 𝑃𝐼(𝑖) for in-

tensity value i existing in the image I is defined by Eq. 

1. 

 

𝑃𝐼(𝑖) =
1

𝑁
∑ δ(𝑖 − 𝐼(𝑥))

𝑥

(1) 

 

, where 𝑃𝐼(𝑖) represents the probability that the inten-

sity value 𝑖 = 0, 1, 2, …, 255 appears in the image I. 𝒙 

denotes a two dimensional vector of integers repre-

senting discrete pixel positions in image I. N denotes 

the number of pixels in the image I, and 𝐼(𝒙) denotes 

the intensity value of the pixel at 𝒙, respectively. 𝛿() 

denotes the Kronecker delta function defined by Eq. 2. 

 

𝛿(𝑖 − 𝑖′) = {
1 (𝑖 = 𝑖′)

0 (𝑖 ≠ 𝑖′)
(2) 

 

Similarly, the joint probability distribution of the im-

ages I and I’ of the same size is defined by Eq. 3. 

 

𝑃𝐼𝐼′(𝑖, 𝑗) =
1

𝑁
∑ δ(𝑖 − 𝐼(𝑥))δ(𝑗 − 𝐼′(𝑥))

𝑥

(3) 

 

where i and j represent intensity value of 0, 1, 2, …, 

255. At this time, the mutual information (MI) be-

tween images is obtained by Eq. 4. 

 

MI[𝐼, 𝐼′] = ∑ ∑ 𝑃𝐼𝐼′(𝑖, 𝑗)

255

𝑗=0

log
𝑃𝐼𝐼′(𝑖, 𝑗)

𝑃𝐼(𝑖)𝑃𝐼′(𝑗)

255

𝑖=0

(4) 

 

In this paper, the mutual information between images 

is calculated by using Eq. 4. 

3.2 UAV Images during Path Planning 

Referring to [2], the UAV is equipped with a vertically 

downward grayscale camera (image size 640 × 480), 

altimeter, IMU, and inclinometer. In this paper, it is 

assumed that the yaw angle is also obtained by the sun 

sensor. From this information, this paper assumes that 

the UAV attitude roll, pitch, yaw, and altitude z are 

known and constant. 

It is assumed that the satellite image is a monochrome 

satellite image 𝐼satellite of 0.25 m/pixel. The lower the 

altitude of the UAV, the higher the resolution of the 

image that can be obtain. This paper assume that the 

image obtained by the UAV camera is 𝐼𝑢
∗  and the res-

olution of the image 𝐼𝑢
∗ is 0.025 m/pixel, which is 10 

times different from the satellite image. The actual ex-

ploration UAV 1/10 downsamples the image 𝐼𝑢
∗  and 

adjusts the resolution to 0.25 m/pixel, obtains an im-

age  𝐼𝑢 of size 64 × 48 and matches it with the satel-

lite image. Let 𝑙𝑢 and 𝑤𝑢 be the vertical and horizontal 

pixel numbers of the UAV image 𝐼𝑢, respectively. In 

this paper 𝑤𝑢  is 64, and 𝑙𝑢  is 48. Let  𝐼𝑠(𝑥, 𝑦) be the 

image trimmed with the size  𝑤𝑢 × 𝑙𝑢  at the coordi-

nates (𝑥, 𝑦) in the satellite image 𝐼satellite. At this time, 

the mutual information between images at the coordi-

nates (𝑥, 𝑦) in the satellite image 𝐼satellite  can be de-

fined as Eq. 5 using Eq. 4. 

 

MI(𝑥, 𝑦) = MI[𝐼𝑢 , 𝐼𝑠(𝑥, 𝑦)] (5) 

 

Eq. 5 represents the similarity. The position (𝑥̂, 𝑦̂) in 

the satellite image where the value of Eq. 5 is maxim-

ized can be calculated by the following equation. 

 

(𝑥̂, 𝑦̂) = arg max(𝑥,𝑦) MI(𝑥, 𝑦) (6) 
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The absolute position of the UAV can be identified by 

Eq. 5 and Eq. 6 if the difference between the UAV im-

age and the satellite image is small. However, it is not 

possible to obtain the UAV camera image Iu
* with 

higher resolution than the satellite image at the stage 

of path planning performed in advance. Therefore, the 

image Iu cannot be obtained by downsampling. In ad-

dition, when flying at low altitudes, the difference in 

resolution becomes large, making absolute localiza-

tion difficult. In order to reproduce the difference be-

tween the images, this proposed method prepares an 

image Iworld in which the intensity value of each pixel 

of the image Isatellite is added with Gaussian noise with 

mean 0 and standard deviation 𝜎img. At the true posi-

tion 𝒙true = (𝑥true, 𝑦true) , the image trimmed from 

the image Iworld with a size of 64 × 48 after 1/10 

downsampling is regarded as the UAV image Iu. The 

image Iu obtained by the UAV as a camera image is 

regarded as being matched to the resolution of the sat-

ellite image Isatellite. At this time, 𝒙true represents the 

upper left corner of the image Iu. 

4 PROPOSED PATH PLANNING METHOD 

4.1 Uncertainty in Path Planning 

There are two ways to represent the uncertainty in path 

planning: ellipse approximation like Kalman Filter 

[12][14] and particle representation like Particle Filter 

[10]. In [10], the uncertainty increases monotonically 

because the absolute localization is not considered.  

In this paper, the propagation of the uncertainty is 

briefly expressed using confidence ellipse approxima-

tion. On the other hand, particle representation is used 

for absolute localization. Namely, Particle Filter Lo-

calization (Monte Carlo Localization, MCL) is used 

for the absolute localization. In ellipse approximation 

such as the Kalman Filter, there is an assumption that 

the uncertainty is always reduced in the measurement 

update step. In this paper, this assumption becomes 

unnecessary by using the particle representation for 

the measurement update step, that is, the absolute lo-

calization. In this way, it is possible to quantitatively 

represents the increase or decrease of the uncertainty 

in absolute localization. 

4.2 RRT considering Confidence and Reliability of 

Absolute Localization 

Algorithm 1 shows the proposed RRT-based path 

planning method (Confidence-Reliability-Aware RRT, 

CRA-RRT) which considers the confidence and relia-

bility of the absolute localization based on images. Al-

gorithm 2 represents the function SelectMinCost-

Node() in Algorithm 1. This function selects the can-

didate point for RRT extension that can be reduced the 

uncertainty, has the estimated position within the al-

lowable range and has the minimum cost. Unlike re-

lated works, this algorithm can consider the increase 

or decrease in the uncertainty of absolute localization 

and the reliability of the estimated position. 

The outline of the proposed method is as follows. In 

CRA-RRT, the nnear nearest nodes in RRT graphs with 

respect to xrand are defined as 𝑣near ∈ 𝑉near . Let 

𝑣candidate. 𝒙 be the point extended by a certain dis-

tance le from 𝑣near. 𝒙. Save the value that propagates 

the uncertainty from 𝑣near  to 𝑣candidate  in the candi-

date node 𝑣candidate. Let 𝑉candidate be a set of the nnear 

candidate nodes. At these candidate nodes 𝑣candidate ∈
𝑉candidate, the uncertainty can be reduced by MCL, the 

error of the estimated position is within the allowable 

range 𝜀threshold, and the node with the minimum cost 

is adopted as new RRT node. As a result, it is possible 

to increase the confidence by reducing the uncertainty 

and improve the reliability of the estimated position. 

4.3 Uncertainty Quantification 

This section defines the quantity that represents posi-

tion uncertainty. The average of the positions of the 

particles 𝑥̂  and the covariance matrix 𝚺  are repre-

sented by Eq. 7 and Eq. 8, respectively. 

 

𝒙 =
1

𝑀
∑ 𝒙particle

𝑖

𝑀

𝑖=1

(7) 

 

𝚺 =
1

𝑀
∑(𝒙particle

𝑖 − 𝒙)(𝒙particle
𝑖 − 𝒙)

𝑇
𝑀

𝑖=1

(8) 

 

Eq. 7 represents the estimated position. The uncer-

tainty value proportional to the area of the confidence 

ellipse is defined by Eq. 9. 

 

𝑆uncertainty = √det(𝚺) (9) 

 

4.4 Uncertainty Propagation in Path Planning 

The propagation of the uncertainty associated with the 

motion in the proposed method is briefly represented 

by using confidence ellipse approximation similar to 

[14]. Let 𝑣candidate . 𝚺 be the propagation of the uncer-

tainty 𝑣near. 𝚺 of each nearest neighbor node 𝑣near ∈
𝑉near  of the sampled point 𝒙rand . Then 𝑣candidate. 𝚺 

can be calculated by Eq. 10 and Eq. 11. 
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Algorithm 1 Confidence-Reliability-Aware RRT 

Input: Satellite image 𝐼satellite , initial position 

𝒙init, initial uncertainty 𝚺init, goal posi-

tion  𝒙goal and goal region 𝑿goal 

1: 𝐼world  ← CreateVirtualWorldImage(𝐼satellite) 

2: 𝑣. 𝒙  ← 𝒙init ;  𝑣. 𝒙  ←  𝒙init ; 𝑣. 𝚺  ← 𝚺init ; 

𝑣.PathLength ← 0; 𝑣.Parent ← NULL; 

3: V ←{v} 

4: while True do 

5:  𝒙rand ← Sample(𝐼satellite) 

6:  𝑉near  ← NearestNeighbors(𝑉, 𝒙rand, 𝑛near) 

7:  𝑉candidate← CreateNewNodes(𝑛near) 

8:  𝑉candidate← Propagate(𝑉near, 𝒙rand, 𝑙𝑒) 

9:  𝑐min ← ∞ 

10:  𝑣min ← 𝑣 

11:  (𝑐min, 𝑣min)  ← SelectMinCost-

Node(𝑐min, 𝑣min, 𝑉candidate , 𝐼satellite , 𝐼world) 

12: if 𝑐min< ∞ then 

13:   𝑉 ← 𝑉 ∩ {𝑣min} 

14: if 𝑣min. 𝒙 ∈  𝑿goal then 

15: return V 

16: end if 

17: end if 

18: end while 

 

𝑣candidate. 𝚺 = 𝑣near. 𝚺 + 𝑹unc (10) 

 

𝑹unc = diag ((𝛼uncertainty𝑙𝑒)
2

, (𝛼uncertainty𝑙𝑒)
2

)  

(11) 

, where 𝑙𝑒 is the internode distance. 

4.5 Cost Function 

The cost function at the candidate node 𝑣candidate is 
defined by the Eq. 12 

 

Cost(𝑣candidate)

= 𝑤𝑑(𝑣candidate . PathLength

+ H(𝑣candidate. 𝒙)) + 𝑤𝑢 𝑆uncertainty
after  

(12) 

 

Algorithm 2 Select Minimum Cost Node 

Input: Minimum cost  𝑐min, minimum cost 

node  𝑣min , candidate nodes set 

𝑉candidate, satellite image 𝐼satellite, vir-

tual world image  𝐼world 

1: for all 𝑣candidate ∈ 𝑉candidate do 

2:  𝐼𝑢 ← GetImg(𝐼world, Size(𝐼𝑢), 𝑣candidate. 𝒙) 

3:  𝑿particle ← ∅; 𝑾particle ← ∅; 

4:  for i ← 1 to 𝑛particle do 

5:   𝒙particle
𝑖  ~ 𝒩(𝑣candidate . 𝒙, 𝑣candidate. 𝚺) 

6:   𝑿particle ← 𝑿particle ∩ {𝒙particle
𝑖 } 

7:    𝐼𝑠 ← GetImg(𝐼satellite, Size(𝐼𝑢), 𝒙particle
𝑖 ) 

8:   𝑤𝒊 ← CalcSimilarity(𝐼𝑢 , 𝐼𝑠) 

9:   𝑾particle ← 𝑾particle ∩ {𝑤𝑖} 

10:  end for 

11:  𝑆uncertainty
before  ← CalcUncertainty(𝑿particle) 

12:  𝑿particle ← Resample(𝑿particle, 𝑾particle) 

13:  𝑆uncertainty
after  ← CalcUncertainty(𝑿particle) 

14:  (𝑣candidate . 𝒙, 𝑣candidate . 𝚺 )  ← Mean-

Cov(𝑿particle) 

15:  𝜀 ← Distance(𝑣candidate . 𝒙, 𝑣candidate. 𝒙) 

16:  𝑐 ← Cost(𝑣candidate) 

17:  If 𝑆uncertainty
before > 𝑆uncertainty

after  and 

𝜀threshold >  ε and 𝑐min > 𝑐 

18:   𝑐min ← 𝑐 

19:   𝑣min ← 𝑣candidate 

20:  end if  

21: end for 

22: return (𝑐min, 𝑣min) 

 

, where 𝑣candidate. PathLength  is the path length 

from the start position to the candidate node posi-

tion 𝑣candidate. 𝒙 , H(𝑣candidate. 𝒙)  is the shortest 

distance from the candidate node posi-

tion 𝑣candidate. 𝒙  to the goal position, and 𝑤𝑑  and 

𝑤𝑢 are the weights related to the path length and the 

uncertainty, respectively. These weights are set so 

that 𝑤𝑑 + 𝑤𝑢 = 1, 𝑤𝑑 ≥ 0, 𝑤𝑢 ≥ 0 . By setting the 

weight parameters by the user of the path planning 
method, it is possible to generate a path considering 
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the balance between the magnitude of the effect of 

absolute localization and the path length. 

5 SIMULATION STUDY 

5.1 Simulation Setting 

Fig. 2 shows the satellite image ESP_062319_1985 

[15] of the candidate landing site for the Mars 2020 

mission obtained from NASA’s HiRISE Mars probe 

camera. The monochrome version of this image is de-

fined as the satellite image 𝐼satellite in the simulation. 

The intensity value of each pixel is an integer from 0 

to 255. In Fig. 2, the start position (100, 130) is indi-

cated by a blue dot, the goal position (700, 130) is in-

dicated by a red dot, and the goal area is indicated by 

a red circle. These are used as inputs for the path plan-

ning algorithm, and the paths are output and saved. 

This section will evaluate the path planning method by 

path following simulations. 

The simulation parameters are shown in Tab. 1. The 

goal sampling rate rg is the probability of sampling the 

goal position during random sampling. This allows us-

ers of the RRT path planning algorithm to set the 

search probability in the goal direction. It is assumed 

that the initial true position is generated from the 

Gaussian distribution with the start position as the 

mean and with the standard deviation of 𝜎true. The be-

lief distribution at the initial position is the mean of the 

start position, and the uncertainty is the covariance 

matrix with the standard deviation of 𝜎init .  

In this simulation, the minimum uncertainty 𝜎min  is 

set to prevent the absolute localization from becoming 

impossible due to the belief distribution becoming too 

small. The motion uncertainty is represented by 𝛼 , 

which represents the magnitude of uncertainty per dis-

tance traveled. In this simulation, the parameter of the 

belief distribution is set twice as large as the true value 

with respect to the magnitude of uncertainty in order 

to prevent the estimation of the position from becom-

ing impossible. 𝛼true is the magnitude of uncertainty 

of the true position per travel distance. If  𝛼true = 0.05, 

it means that the uncertainty of 5% of the distance trav-

eled is added. Let 𝒖(𝑡) be the vector from the esti-

mated position after the absolute localization at a cer-

tain time step t to the next target position. Let 𝑹true(𝑡) 

be the motion uncertainty of the true position. At this 

time, the motion of the true position is represented by 

Eqs. 13-15. 

 

𝒙true(𝑡 + 1) = 𝒙true(𝑡) + 𝒖(𝑡) + 𝒘true(𝑡) (13) 

 

𝒘true(𝑡)~𝒩(𝟎, 𝑹true(𝑡)) (14) 

 

𝑹true(𝑡) = diag((𝛼true‖𝒖(𝑡)‖)2, (𝛼true‖𝒖(𝑡)‖)2) 

(15) 

 

The true position is unknown for the UAV when fol-

lowing the path. On the other hand, the current esti-

mated position and the next target position are known. 

Namely, the vector 𝒖(𝑡) is known. Therefore, Eq. 13 

represents that the true position is moved from the cur-

rent position to the next target position with uncer-

tainty. The propagation of the belief distribution ac-

companying the motion of the UAV is represented by 

Eqs. 16-18. 

 

𝒙(𝑡 + 1) = 𝒙(𝑡) + 𝒖(𝑡) (16) 

 

Σ̅(𝑡 + 1) = Σ(𝑡) + 𝑹unc(𝑡) (17) 

 

𝑹unc(𝑡) = 

diag ((𝛼uncertainty‖𝒖(𝑡)‖)
2

, (𝛼uncertainty‖𝒖(𝑡)‖)
2

) 

(18) 
 

, where 𝒙(𝑡 + 1)  is the estimated position after the 

motion. This matches the target position.  𝒙(𝑡) is the 

estimated position of the node at time step t,  Σ̅(𝑡 + 1) 

is the uncertainty of the belief distribution after the 

motion, Σ(𝑡) is the uncertainty of the node at time step 

 

Figure 2:  Start position (blue), goal position (red) 

and goal area (red circle) in the satellite image 

[15] by NASA/JPL/University of Arizona 

Table 1:  Parameters for simulation 
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t, 𝛼uncertainty  is the magnitude of uncertainty per 

travel distance of the belief distribution. In addition, 

when the difference between the satellite image and 

the UAV camera image is large, the true position and 

the position identification result of Eq. 6 may not 

match. In order to reproduce such a situation, the 

standard deviation at the time of image Iworld genera-

tion is set to 𝜎img = 10 so that there are some cases 

that the true position 𝒙true and the identification result 

of Eq. 6 do not match. 

5.2 Simulation Evaluation Method 

As the evaluation value, the goal reach rate of the true 

position and the final uncertainty are used. The goal 

reach rate represents the probability that the true posi-

tion is reached the goal area when the estimated posi-

tion is reached the goal area. The final uncertainty is 

the uncertainty when the estimated position is reached 

the goal area. The smaller the final uncertainty, the 

higher the confidence of self-position, and the higher 

goal reach rate, the higher the reliability of absolute 

localization. 

The method of deriving the evaluation value of the 

path planning method is described as follows. First, 

generate 30 paths for a certain condition. For each gen-

erated path, the path is followed 100 times, the number 

of the true position reaching the goal area is measured, 

and the number is divided by 100 to derive the goal 

reach rate. The final uncertainty is calculated by fol-

lowing 100 times for each path, obtaining the final un-

certainty at 100 times goals, taking the average, and 

taking the average for the 30 paths. These goal reach 

rate and final uncertainty are used as evaluation values 

in this simulation. 

Next, the evaluation method of the best path regarding 

the goal reach rate of the paths generated by the pro-

posed method CRA-RRT and the best path in the sense 

of the shortest path generated by the normal RRT 

method is described. The path with the highest goal 

reach rate among the 30 paths generated by the pro-

posed method is set as the best path regarding the goal 

reach rate. The straight path generated by the normal 

RRT when the goal sampling rate rg = 100% is the best 

path in the sense of the shortest path. This simulation 

compares the goal reach rate and the average value of 

the final uncertainty when 500 path-following simula-

tions are performed for each of these paths. 

6 SIMULATION RESULTS 

6.1 Comparison for Parameter Changes 

In the proposed method, the comparison results are 

shown for the results when the parameters are changed. 

When the reliability threshold 𝜀threshold = ∞ and the 

weight parameters of the cost function are (𝑤𝑑 , 𝑤𝑢) =
(1.0,0.0), (0.5,0.5), (0.0,1.0), the goal reach rate re-

sults are shown in Fig. 3. The results when 

𝜀threshold = 0.5 are shown in Fig. 4. Similarly, the fi-

nal uncertainty results are shown in Fig. 6 and Fig. 7.  
It was shown that the larger the weight parameter 𝑤𝑢, 

the higher the goal reach rate and the smaller the final 

uncertainty. It was also shown that the smaller the tol-

erance 𝜀threshold of the estimated position, the higher 

the goal reach rate and the smaller the uncertainty. In 

Fig. 4, the change in goal reach rate is small because 

if 𝜀threshold is very small, there are almost no candi-

date nodes that satisfy the reliability condition of the 

estimated position, and the cost cannot be considered. 

6.2 Comparison of Path Planning Method 

Next, a comparison between the normal RRT (goal 

sampling rate rg = 5%) and the proposed method is 

shown. Tab. 2 shows the evaluation results.  

This simulation uses 𝜀threshold = 0.5, (𝑤𝑑 , 𝑤𝑢) =
(0.0,1.0) as the parameter when generating the paths 

by the proposed method. As a path planning method, 

normal RRT adopts nodes as it is without considering 

the effect of absolute localization. As a result, it is con-

sidered that the effect of absolute localization was 

small even when the path was followed while perform-

ing absolute position estimation. Consequently, the 

goal reach rate of normal RRT was low, and the final 

uncertainty was large. 

6.3 Comparison of the Best Paths 

Finally, this simulation compares the performance of 

the straight path, which is the shortest path, and the 

path with the maximum goal reach rate among the 30 

paths generated by the path planning algorithm of the 

proposed method, CRA-RRT. Tab. 3 shows the eval-

uation results. The best path by the proposed method 

improved the goal reach rate by 18.4% and reduced the 

final uncertainty by 58.9% from 135 to 55.5 on aver-

age compared to the straight path. Fig. 7 and Fig. 8 

show the straight path and the path of CRA-RRT with 

the maximum goal reach rate, respectively. The white 

dots in Fig. 7 and Fig. 8 represent the positions where 

the UAV obtains an image when the path is perfectly 

followed. Here, the white dots are the dots at the upper 

left corner of the UAV image. If the UAV go along the 

straight path from the start to the goal, the UAV will 

pass through a feature-poor terrain. The path generated 

by the proposed method in Fig. 8 was planned to by-

pass the feature-poor terrain.  

7 CONCLUSION 

This paper proposed a path planning method aimed at 
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improving the absolute localization accuracy for the 

exploration UAVs. By extending the path by quantita-

tively considering the increase or decrease of the un-

certainty in absolute localization and the error of posi-

tion estimation, the confidence and the reliability of 

position estimation were improved. The effectiveness 

of the proposed method was shown by simulations. 

A future work is to realize a three-dimensional path 

planning. In this paper, it is assumed that the altitude 

is constant, however, it is desirable to build a model of 

position estimation that changes three-dimensionally 

and apply it to the proposed method to build a more 

practical path planning method. 
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Figure 5: Final uncertainty (𝜀threshold = ∞) 

 

Figure 6:  Final uncertainty (𝜀threshold = 0.5) 
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Figure 7:  Straight path (shortest path) in the sat-

ellite image [15] 

 

Figure 8:  Highest goal reach rate path in the sat-

ellite image [15] 
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