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ABSTRACT 

Hopping robots, called hoppers, are expected to act on 
rough terrain, such as disaster areas, planetary envi-
ronments, or the both. The uncertainties of the hopping 
locomotion in such environments are big, and hence 
we need path planing algorithms to traverse in uncer-
tainty environments. This study investigated hopping 
as a locomotion strategy for robotic planetary rovers. 
First, we designed the hopping and wheeled robot, 
then confirmed the performance in a 3D simulator, Py-
bullet. We made a planetary-like rough terrain in the 
simulator, and confirmed that the robot could roll and 
hop like the real device. In order to improve the loco-
motion strategy, we tested the use of reinforcement 
learning. Control policies were learned that allow the 
robot to move and to reach the goal, but more simula-
tions are needed to better validate the approach in var-
ious conditions. 

1 INTRODUCTION 

How to expand planetary exploration area? Planetary 
surface exploration has been conducted using wheeled 
vehicle robots, called rover. Lunokhod 1 and 2, and 
Chang’E-3 and -4 had been developed to explore the 
Moon and succeeded in their missions. The Martian 
surfaces had been explored by Sojourner, Spirit and 
Opportunity, and has been being explored by Curiosity. 
Recently, various environments are expected to re-
search by robots. However, such environments are of-
ten hard to traverse using wheeled rovers. Hopping 
rovers, called ‘hopper,’ are one of the solutions to per-
form on challenging terrains. Hoppers are expected to 
act in disaster areas[1], or celestial bodies[2], [3], [4], 
[5]. In the September 2019, the MINERVA-II, the 
hopper developed by JAXA/ISAS, succeeded the 
landing on the surface of the asteroid "Ryugu", the lo-
comotion, and taking the photos (Fig. 1) [6]. This 
achievement   indicates that the planetary surface ex-
plorations by hoppers become active more and more. 
For example, various environments, such as a Recur-
ring Slope Lineae (RSL) on Mars [7], are expected to 
research by the hoppers. However, there are many 

challenges to carry out actual planetary surface explo-
rations by a hopper/hoppers. One of the challenges is 
the path or motion planning problems. We cannot 
know the details of the conditions of planetary sur-
faces before robots arrive at and explore a celestial 
body. The environments have uncertainties of locomo-
tion. In addition, planetary surfaces are almost covered 
with granular media, called regolith. The sandy ter-
rains might cause the stuck. Therefore, we need hop-
ping path/motion planning algorithms in order to in-
vestigate such terrains, or environments by the hopper.  

The contribution of this paper is to validate the hopper 
performance in planetary-like environments using a 
3D simulator. In order to develop the hopper, the vali-
dation of the performance using 3D simulator is im-
portant because it is difficult to test in actual planetary 
environments. First, the design of the hopper is shown. 
Next, the performance of the hopper is tested in vari-
ous terrains. Finally, we describe the hopping locomo-
tion generated by reinforcement learning. 

2 THE ROVER DESIGN 

This work employs a two-wheeled robot equipped 
with a hopping mechanism as shown in Fig.2. This de-
sign allows different modes of locomotion and im-
proves the traversability of the robot on rough terrains. 
The robot uses the wheels on relatively flat terrain and 

Figure 1:  MINERVA II and the contribution. Left: 
the image of MINERVA II on asteroids. Right: the 
real photo what MINERVA II took while hopping 
on asteroid Ryugu. Image credit by JAXA[6]. 
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gentle slopes, and to change directions. Hopping loco-
motion is used to clear an obstacle, step, cliff, or to 
escape from a stuck position. 

3 SIMULATION STUDY 

This section describes the details of the simulation of 
this study. As a 3D simulator, this study employs “Py-
bullet [8]” in order to validate the performance of the 
robot in planetary environments. First, the conven-
tional wheel controller is validated. Next, the hopping 
locomotion in planetary environments is  

3.1 Performance of Wheel Locomotion 

One of the important subjects of the robot control is to 
follow a path accurately, which is generated by a path 
planning algorithm. Pure pursuit [9] is one of the path 
following algorithms. Figure 3 shows an image of pure 
pursuit. The algorithm is turning controller to reach a 
target point on the reference path. The calculation cost 
of the pure pursuit is light enough, hence the algorithm 
is suit for the planetary rover. The distance between 
the robot and a target point is constant, called “Look 
ahead distance (𝐿)”. The angle error 𝛼	between the ro-
bot and a target point is described as below: 

α =  arctan ,
𝑦!"# − 𝑦$
𝑥$%& − 𝑥!

0 − 𝜃 (1) 

where (𝑥! , 𝑦!), 6𝑥$"# , 𝑦$"#7	𝑎𝑛𝑑	𝜃 denote the position 
of the robot, the target point, and the look ahead 

direction of the robot. The turning velocity 𝜔 is calcu-
lated as follows: 

𝜔 =
2𝑣!𝑠𝑖𝑛𝛼

𝐿
(2) 

where 𝑣!  denotes the velocity of the robot. Figure 4 
shows the simulation of a wheel locomotion by pure 
pursuit. The robot perfume on flat plane (left figure) 
and rough terrain (right figure). The rough terrain is 
modeled as a planetary environment. 

The results are shown in Fig.5 and Fig.6. The reference 
paths are circle (Fig. 5) and parabola (Fig. 6), ex-
pressed as blue line. The actual paths are expressed as 
red line. The results indicate that the pure pursuit al-
gorithm performs well on flat plane. On the other hand, 
the robot does not follow the reference path with accu-
racy. This is because the roughness of terrain, or slopes. 
These results show that planetary rovers need other lo-
comotion systems to traverse on rough terrain. 

Figure 2: The image of the hopping robot and 
the planetary like terrain 

Figure 3: The image of pure pursuit algorithm[10] 

Figure 4: The simulation of pure pursuit; (Left) flat 
terrain; (RIght) rough terrain 

Figure 5: The results of path following(circle); (Left) 
flat terrain; (RIght) rough terrain 

Figure 6: The results of path following(parabola); 
(Left) flat terrain; (RIght) rough terrain 
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3.2 Performance of Hopping Locomotion 

This section presents the performance of hopping lo-
comotion. We confirm that only wheeled locomotion 
does not perform well on rough terrain. The simulation 
of hopping is shown in Fig. 7. The algorithm of hop-
ping locomotion is shown in Fig. 8. If the angle error 
𝛼  between the robot direction and the goal is more 
than the constant value 𝛼'( , the robot rotates on the 
spot. If the 𝛼 is less than the 𝛼'(	, the robot hop. After 
hopping, the distance 𝑑	between the robot and the goal 
is larger than the constant distance 𝑑'( , the robot con-
tinues hopping. If not, the robot finishes the locomo-
tion. Figure 9 shows the hopping locomotion simula-
tion on the moon, the mars, and the earth. The results 
indicate that the larger hopping distance is, the smaller 
the gravitational level is. The robot needs three times 
hopping on the moon, and four times on the earth. 
However, the robot cannot reach the goal. The robot 
stuck on the sunken place and could not escape form 
the place. This is why the robot have to choose a hop-
ping pattern depends on the terrain condition. In addi-
tion, the combination of hopping and wheeled locomo-
tion can traverse more flexibly on various terrains. 

 

4 REINFORCEMENT LEARNING FOR HOP-
PING 

In order to improve hopping performance, we use the 
reinforcement learning. Reinforcement learning is one 
of the most active field of machine learning. Robotics 
is one of the applications of reinforcement learning. 
The advantages of the reinforcement learning for ro-
botics are that it does not depend on the environment, 
and it can be applied in case of changing the environ-
ment where a robot act [11].  

4.1 The Design of Parameters 

We use policy gradient which is one of the methods of 
reinforcement learning. The method learns the action 
policy which maximize the value function. This simu-
lation uses the discount factor 𝛾 = 0.9, and the learn-
ing rate 𝛼)%*$+ = 0.01. The reward function 𝑟	is de-
signed as below: 

𝑟	 = 	1/𝑑 (3) 

If the robot can reach the goal, the robot gets the re-
ward +500. If the distance between the robot and the 
goal become larger than a constant distance, the robot 
gets the penalty -500. In addition, if the robot cannot 
reach the goal in 40 seconds, the robot gets the penalty 
-400, and the simulation is stopped. 

4.2 The Results of the Simulation 

Figure 10 shows the locomotion generated by rein-
forcement learning. The rewards history is shown in 
Fig. 11. The total number of learning is 500. We ob-
serve that the reward function converges to -125 
around 300 times of iterations. The reason of why the 
reward function converges to negative value is that the 
robot did not reach the goal in 40 seconds while learn-
ing. After finished learning, we apply the weight of 
neural network to the hopping simulation, and we can 
confirm that the robot can reach the goal. However, we 
also confirm the unrealistic locomotion, such as driv-
ing on single wheel on slope. For the future works, we 
will modify the design of reward function, add the pen-
alty or limitation to the each actions. 

5 CONCLUSION 

This paper presents the hopping and wheeled locomo-
tion performance in planetary environments using 3D 
simulator. Only wheels or hopping locomotion does 
not perform well in planetary environments. The rein-
forcement learning are applied to the combination lo-
comotion, and the robot could reach the goal. As future 
works, we need modified the action list or reward 
function in order to create realistic motions. 

 

Figure 8: The algorithm of hopping locomotion 

Figure 7: The simulation of hopping locomotion 

5011.pdfi-SAIRAS2020-Papers (2020)



References 
[1] H. Tsukagoshi, M. Sasaki, A. Kitagawa, and T. 
Tanaka (2005) Design of a higher jumping rescue ro-
bot with the optimized pneumatic drive. In: proceed-
ings of the 2005 IEEE International Conference on 
Robotics and Automation, pp. 1276–1283. 

[2] R. G. Reid, L. Roveda, I. A. Nesnas, and M. 
Pavone (2014) Contact dynamics of internally-actu-
ated platforms for the exploration of small solar sys-
tem bodies. In: International Symposium on Artificial 
Intelligence, Robotics and Automation in Space (i-
SAIRAS), Saint-Hubert, Canada, p. 9. 

[3] D. Mège, J. Gurgurewicz, J. Grygorczuk, Ł. 
Wiśniewski, and G. Thornell (2016) The highland ter-
rain hopper (hopter): Concept and use cases of a new 
locomotion system for the exploration of low gravity 
solar system bodies. Acta Astronautica, vol. 121, pp. 
200–220. 

 [4] S. Montminy, E. Dupuis, and H. Champliaud 
(2008) Mechanical design of a hopper robot for plan-
etary exploration using sma as a unique source of 
power. Acta Astronautica, vol. 62, no. 6-7, pp. 438–
452. 

[5] T. Yoshimitsu (2004) Development of autonomous 
rover for asteroid surface exploration. In: IEEE Inter-
national Conference on Robotics and Automation 
(ICRA), vol. 3, pp. 2529–2534. 

[6] JAXA. Minerva-ii1: Images from the surface of 
ryugu. Available at: http://www.haya-
busa2.jaxa.jp/en/topics/20180927e_MNRV/. 

[7] J. Levy (2012) Hydrological characteristics of re-
current slope lineae on mars: Evidence for liquid flow 
through regolith and comparisons with antarctic ter-
restrial analogs. Icarus, vol. 219, no. 1, pp. 1–4. 

[8] E. Coumans and Y. Bai. Pybullet, a python module 
for physics simulation for games, robotics and ma- 
chine learning. Available at: http://pybullet.org 

[9] R. C. Coulter (1992) Implementation of the pure 
pursuit path tracking algorithm. tech. rep., Carnegie-
Mellon UNIV Pittsburgh PA Robotics INST. 

Figure 7: The simulation of hopping locomotion 
Figure 9: The results of hopping trajectory. The green points show the hopping spot. The red lines show the trajectory. Left: 
The trajectory in the moon environment(1/6G); Center: The trajectory in the mars environment(1/3G); Right: The trajectory 
in the earth environment(1G). 

Figure 10: The simulation of locomotion generated by 
reinforcement learning 

Figure 11: The history of the rewards while learning 
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