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Background:  Epistemic  uncertainty  in
atmospheric density and winds is a major cause of sub-
optimal  performance  in  the  Entry,  Descent,  and
Landing guidance of Mars vehicles. Current guidance
algorithms  rely  on  relatively  simple  on-board
estimation  methods adjusting a nominal exponential
density profile through the estimation of scale factors
and  scale  heights  [1],  Kalman  filters  [2,  3],  or
ensemble correlators [4, 5].  These methods generally
do not achieve high prediction accuracy due to their
simplifying assumptions (for instance, neglecting time
and position  dependence  of  atmospheric  density).  In
addition,  no  approaches  currently  exist  for  the
prediction  of  winds,  which  may  considerably  affect
landing errors of high A/m vehicles.

Objective:  We  improve the robustness of current
Mars  EDL  guidance  algorithms  to  off-nominal
dynamic  environments  by  proposing  a  reliable on-
board atmospheric estimation algorithm. The algorithm
estimates  density  and wind profiles  from the current
altitude down to the surface at each guidance call, and
provides associated prediction uncertainties.

Method:  We  choose a  deep  learning  regression
algorithm,  the  Long  Short-Term  Memory  Network
(LSTM),  a  particular  type  of  Recurrent  Neural
Network that handles sequential time series of features
efficiently  [6].  The  LSTM  is  trained  on  inertial
measurements, such as the state and aerodynamic force
histories. The training dataset is generated by running
an extensive set of Monte Carlo simulations in which
controlled EDL trajectories are generated by using the
Fully  Numerical  Predictor-corrector  Entry  Guidance
(FNPEG)  algorithm  during  atmospheric  entry.  Each
trajectory  corresponds  to  a  particular  atmospheric
density  profile  that  is  generated  through  the  Mars
Global Reference Atmospheric Model (GRAM) 2010.
Particular attention is devoted to the processing of the
network  features  (inputs)  and  targets  (outputs)
necessary to improve the performance of the network.
In addition, we investigate the effect of introducing air
data  measurements  as  features  and  we  quantify  the
uncertainty  associated  with  network  predictions
through Gaussian processes [7].

Results:  We  train  a  sequence-to-one  LSTM  to
predict the atmospheric density profile from 0 km to
150 km. The training and validation datasets consist of
4500 and 500 trajectories, respectively, each of which
has  a  different  GRAM-generated  density  profile.
Figure 1 shows that the network is able to predict the

density  with  a  6%  RMS  error  on  average.  Further
analysis  shows  that  the  prediction  performance
improves  for  altitudes  of  particular  interest  for
guidance (less than 80 km). The accurate estimate of
density is fed to the numerical predictor-corrector entry
guidance,  which  results  in  greater  landing  accuracy.
The proposed algorithm also shows significant promise
for the prediction of horizontal winds.

Conclusions:  We  devised  a  deep  learning
algorithm improving the robustness of on-board Mars
EDL guidance through the prediction of atmospheric
density  and  winds  from  inertial  and  air  data
measurements.  Improved  knowledge  of  atmospheric
characteristics is of considerable import to enhance the
autonomy of Mars entry vehicles.
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Figure  1: Histogram  of  RMS  relative  density  error  along  each
trajectory sample. Blue and green histograms are for the training
and  validation  sets,  respectively.  The  mean RMS relative  density
error is 6%.
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