
Monica Ekal1*, Keenan Albee2*, Brian Coltin3, Rodrigo Ventura1, Richard Linares2, and David W. Miller2

1 Institute for Systems and Robotics, Instituto Superior Técnico 2 Department of Aeronautics and Astronautics, 
Massachusetts Institute of Technology 3 SGT Inc., NASA Ames Research Center

Introduction

This work was supported by the NASA Space Technology Mission Directorate through a NASA Space Technology Research Fellowship under grant
80NSSC17K0077, the LARSyS - FCT Plurianual funding 2020-2023, P2020 INFANTE project 10/SI/2016, and an MIT Seed Project under the MIT Portugal
Program. Thank you to the Astrobee team at NASA Ames.

* Equal contribution
Contacts – mekal@isr.tecnico.ulisboa.pt, albee@mit.edu 

Acknowledgements

Autonomous microgravity robots, like the Astrobee assistive free-flyer, must often interact with
dynamic environments and systems with uncertain properties. The ability to perform receding horizon
planning and control can enhance system performance and safety by determining control actions
online using the latest available information. Future robotic free-flyers will use such algorithms to
manipulate cargo, assemble on-orbit structures, and safely assist astronaut activities. The Astrobee
platform will be a key enabler of research into this area from a guidance, navigation and control (GNC)
and autonomy perspective. Two main contributions are detailed:
• Implementation and testing of the first model predictive controller on Astrobee hardware
• Software integration details of the algorithm and repurposing the Astrobee Flight Software (AFS) for

guidance navigation and control (GNC) research, with accompanying software guide Figure 1: The Astrobee robotic free-flyer on an air bearing at 
the NASA Ames ground test facility during testing. Astrobee's

capabilities as a GNC testbed are becoming evident.

GNC First Steps: Model Predictive Control

Integration with Astrobee's Autonomy Stack

Astrobee Autonomy Stack Highlights

References

Initial integration tests of MPC were successfully carried out on
Astrobee hardware. Further details on this implementation can be
found in the technical report accompanying this poster. Over the course
of this work, an in-depth understanding of Astrobee’s software stack
was gained, and important strides were made in shaping
GNC integration which are shared in a software guide [4]. Future work
will build on this platform to enable real-time microgravity probabilistic
planning and estimation research.

Figure 2: Normalized state error (left) with a waypoint change, and the path tracked 
by Astrobee (right) in the horizontal plane for three hardware runs. The red dash 

represents the pose of the x-axis of robot, plotted to show orientation.

[1] J. B. Rawlings, D. Q. Mayne, and M. M. Diehl, Model predictive control: theory, computation, and design, vol. 197. 2019.; [2] Smith, T. et al. (2016)
Astrobee: A new platform for free-flying robotics on the international space station.; [3] Fluckiger, L. et. al. (2018). Astrobee robot software: a modern
software system for space.; [4] K. Albee, M. Ekal, and C. Oestreich, “A Brief Guide to Astrobee’s Flight Software,” 2020. Available: https://github.com/albee/a-
brief-guide-to-astrobee

This work was one of the first uses of Astrobee as a GNC research testbed
[2][3]. Many practical hurdles were overcome to integrate with Astrobee’s
autonomy stack. Moreover, these solutions are being provided to the
broader Astrobee research community including [4]:

• Overriding default planning and control architecture;
• Providing build/test/document strategies for Astrobee development;
• Identifying Astrobee software interfaces for GNC/autonomy;
• Integrating outside libraries and GNC code (e.g., ACADO, CasADi).

Astrobee's Autonomy Stack consists of a high-level manager (Executive) 
which oversees various ROS nodelets that encapsulate key functionalities. 
A Choreographer and Planner coordinate building motion plans, while a 
GNC subsystem handles estimation (EKF), control (CTL), and the mixer 
(FAM). A pipeline to add custom GNC functionality to Astrobee was 
developed and is shared in detail in [4].

Conclusion

Figure 3: An overview of Astrobee's autonomy components relevant to GNC. The black 
outline shows the integrated command and control functionality, which overrides 

Astrobee's default Planner and CTL interfaces. A wide variety of integration schemes are 
possible, including code originally developed in MATLAB or higher-level languages when 

integrated in this way.

A standard model predictive control (MPC) receding horizon control
algorithm was implemented for Astrobee's planar dynamics [1]. Shown
below is the cost function J, which is optimized at each time step with
weightings on state error (Q), input (R), and a terminal weight (H). MPC can
add constraints arbitrarily, a key benefit over many other optimal controllers.

https://github.com/albee/a-brief-guide-to-astrobee
https://github.com/albee/a-brief-guide-to-astrobee
https://github.com/albee/a-brief-guide-to-astrobee

