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Abstract

Uncertainty in atmospheric density and wind is amajor cause of sub-
optimal performance in the Entry, Descent, and Landing (EDL) guidance
at Mars. We improve the robustness of current EDL guidance algorithms
to uncertain dynamic environments by proposing a reliable on-board
atmospheric estimation algorithm. The algorithm consists of a deep,
recurrent neural network using an efficient architecture for time-series
predictions, the Long Short-Term Memory (LSTM) cell. The LSTM net-
work is trained on entry trajectories simulated with the Fully Numerical
Predictor-corrector Guidance (FNPEG); in each trajectory the vehicle is
subject to density and wind fields from instances of the Mars Global
Reference Atmospheric Model (GRAM) 2010. Predictions of density and
wind as a function of altitude expected along the trajectory are obtained
from onboard acceleration measurements and state estimates. The al-
gorithm achieves a RMS value over time for the relative density error in
the order of 10% for samples in the validation dataset, and significantly
improves performance with respect to an exponential fit to the density.

Introduction
Groundbreaking advances in EDL guidance are required to satisfy
accuracy and reliability requirements of future Mars missions [1].
In this context, Numerical Predictor Correct (NPC) guidance algo-
rithms have been shown to significantly improve performance
with respect to analytical guidance laws. In the predictor step of
a NPC, the current state is propagated forward under an assigned
control law until meeting a prescribed final condition. Subse-
quently, a new control law is computed in the corrector step with
the aim of minimizing an error metric (e.g. a range error), and the
procedure is iterated until reaching a sufficiently small error tol-
erance.

Dynamical models in the predictor step often rely on simplified
assumptions, such as the density being is an exponential func-
tion of altitude exclusively. Several approaches have been devel-
oped to provide accurate atmospheric information to the predic-
tor in order to improve the performance of aerodynamic entry.
Most of these rely on a multiplicative scale factor either for the
density or for the aerodynamic force, which is estimated through
a low-pass or fading-memory filter. However, all of these ap-
proaches rely on the assumption that the density is well de-
scribed by an exponential law and is exclusively a function of
altitude, which do not generally apply due to the time and spa-
tial variability of the Martian atmosphere. In addition, none of
these methods explicitly considers the presence of winds, which
can be a significant hazard during the final EDL stages [2].

In this work, we present a deep learning algorithm to predict
density and wind from onboard state estimates and accelera-
tion measurements. The algorithm is trained on entry trajecto-
ries simulated with the FNPEG guidance algorithm [3], assuming
density and wind provided by the Mars GRAM 2010 atmospheric
model [4].

FNPEG entry guidance
At each guidance cycle, FNPEG computes the bank angle law that
minimizes the range error with respect to a prescribed range-to-
go to be reached at the final value of the energy−e = −µ/r+v 2/2.

The bank angle magnitude is parametrized as a linear function
of the energy,

σ(e ;σ0) = σ0 +
e − e f
e0 − e f

(σf − σ0) , σ0 ≥ 0,σf > 0. (1)

The current bank angle σ0 that minimizes the final range error
s(e f) − sgo is found within a predictor-corrector scheme. In the
predictor step, the final range sf is obtained by numerically in-
tegrating the longitudinal equations of motion (i.e. ṙ , v̇ , γ̇, ṡ ), as-
suming the bank angle law in eq. (1). This is followed by a correc-
tor step in which the value of σ0 is updated through an adaptive
Gauss-Newton method. The longitudinal and lateral equations
of motion are decoupled under the assumption that the offset
between the heading angle and the course to the target is small.
In the lateral guidance, the sign of the bank angle is changed
when the vehicle crosses a velocity-dependent deadband on the
offset between the heading and the course to the target site. This
ensures that the vehicle travels along the great circle connecting
the current and target sites.

Since the current state is numerically integrated until reaching
the final energy in the predictor step, uncertainty on density and
wind will impact the accuracy and reliability of the FNPEG guid-
ance.

Mars GRAM 2010 dataset

In order to build the dataset for the training of the neural net-
works, we simulate 104 entry trajectories in which the density
and wind are computed through a MATLAB implementation of the
Mars GRAM 2010 atmospheric model [4], and guidance is pro-
vided by the FNPEG algorithm. In each of the samples, the back-
ground dust optical depth and the mean value and scale pa-
rameter of the longitude-dependent density wave for the GRAM
model are randomly sampled. The initial conditions and FNPEG
target range and final energy are the same for all trajectories.
Figure 1 shows the density and wind as a function of range (mea-
sured from the entry interface) for the trajectories in the dataset.

Figure 1: Density (left panel) and wind velocity (right panel) as a function of range from the
entry interface for the trajectories in the GRAM dataset. In the right panel, wE ,wN denote
the East and North wind velocity components, and w =

√
w 2

E +w 2
N is the wind velocity

magnitude.
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Figure 2: Computational graph of the LSTM deep learning architecture. The feature
vector at time i and the j th target are Ξi , ιj , respectively. The targets are either
normalized pseudo-density values or wind components, discretized over a set of

altitudes. The hidden and cell states at time i are hi , ci .

Density and wind encountered in the FNPEG predictor step are
predicted from state estimates and acceleration measurements
through deep, recurrent neural networks (RNN). We choose the
Long Short-Term Memory (LSTM) RNN architecture, which is par-
ticularly efficient for predictions from sequential data [5]. At time
t i during the entry phase, the set of features that are input to the
LSTMs is

Ξi = {x (t i ) , a (t i ) ,σ (t i )} , (2)

where x is the state in spherical coordinates, a is the acceler-
ation measured in a Mars-centered frame, and σ is the current
bank angle. We use separate networks to compute either den-
sity values ρ

(
h j
)
or wind velocity componentsw

(
h j
)
discretized

over altitudes h j ∈ [hmin, hmax] from the feature vectorΞi and the
hidden state hi , which contains information about past elements
of the feature sequence. The hidden state of the LSTM cell hi is
passed to a fully connected layer to obtain the targets; the algo-
rithm is portrayed through the computational graph in fig. 2.

LSTM network training and performance
To improve the performance of the network and mitigate the im-
pact of round-off error, features and targets are normalized by
subtracting the mean and dividing by the standard deviation,
which are computed element-wise over the entire dataset.

Training performance
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Figure 3: Training and validation losses as a function of iterations (left panel) and RMS of
the relative density error over all altitudes at the final time (right panel).

We consider the training of the LSTM network portrayed in fig. 2
with 128 units for each of the LSTM gates. The network is
trained for 200 epochs using the adam optimizer in the MATLAB
Deep Learning toolbox, with a mini-batch size of 10. To assess

the generalization capability of the network, we reserve 10% of
the total number of samples as a validation dataset. Figure 3
shows the mean squared error loss computed over the train-
ing and validation datasets as a function of the number of it-
erations. The training and validation losses are of the same or-
der of magnitude on average, proving that the network gener-
alizes well to samples not seen in the training dataset. At the
final time, the RMS value of the relative density error is less than
0.5% on average in both the validation and training datasets.

Figure 4: Relative density error as a function of
time and altitude for a single sample from the

validation dataset. Black stems correspond to the
RMS value of the error over time. Green stems

correspond to the relative density error obtained
with an exponential fit to the dataset.

To assess the perfor-
mance of the network at
intermediate times, we
show the relative den-
sity error as a function
of altitude and time for
an individual sample in
the validation dataset in
fig. 4. The RMS of the rel-
ative density error over
time is around 10% for
all altitudes, and is al-
ways less than the error
obtained when using an
exponential fit to the den-
sity dataset.

Conclusions
• We present a deep learning algorithm for the prediction of
atmospheric density and wind from onboard measurements
during the atmospheric entry of Mars vehicles.

• The algorithm achieves 10% RMS relative error in the predic-
tion of density during entry, and is more accurate than a single
exponential fit.

• Future work will examine the performance of the algorithm in
predicting winds and its impact on the FNPEG guidance accu-
racy.
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