RADIOMETRIC CLOCKS: WHAT THEY TELL US AND WHAT THEY DON'T: II
2:00 p.m. Home Room

2:00 p.m. Cassata W. S. * Borg L. E. [INVITED]
New Constraints on the Timing of Basin-Forming Impact Events from Excavated Crustal Rocks [#6011]
We present results of $^{40}\text{Ar}/^{39}\text{Ar}$ age dating on deep crustal plutonic rocks (Apollo 15, 16, and 17) excavated by large basin-forming impacts.

2:30 p.m. Cohen B. A. *
Searching for Nectaris Basin Impact Melt Rocks [#6009]
Because Nectaris basin is a key stratigraphic marker for lunar bombardment, we are conducting an effort to identify Nectaris basin impact-melt rocks, to model their emplacement, and to examine sites where Nectaris impact melt is abundant.

2:50 p.m. Nyquist L. E. * [INVITED]
Some Less-Well-Known Lunar Ar-Ar Ages and Implications [#6019]
Lunar Ar-Ar ages extend from ~4.4 Ga ago to ~3.5 Ga ago. “Large” impacts continued to the latter date. The lunar cataclysm is less pronounced among the lunar meteorite data.

3:20 p.m. Warren P. H. *
Early Lunar Cratering and a Reality Check on Efforts to Directly Age-Date Magma Ocean Crystallization [#6022]
Ancient lunar isochrons generally represent not igneous crystallization but cooling to closure. The true upward uncertainty in any very ancient lunar igneous crystallization age is never less than about 50 Ma.

3:40 p.m. Fernandes V. A. Fritz J. * Werner S. C.
The Heavy Bombardment Eon of the Earth-Moon System [#6015]
Early or Late Heavy Bombardment are endmember views of lunar impact >chronology. Intermediate scenarios appear as a venue to consensus. We suggest the purely descriptive term Heavy Bombardment Eon (HBE) for the >interlude of intense bombardment.

4:00 p.m. DISCUSSION