THE TUMOR SUPPRESSOR P53 ACTS DURING TOTAL-BODY IRRADIATION TO DECREASE HEMATOPOIETIC STEM/PROGENITOR CELL FITNESS AND TO PROMOTE LYMPHOMA DEVELOPMENT

Chang-Lung Lee1,2, Everett J. Moding2, Katherine D. Castle2, Jordan M. Blum2, Hooney Min1, Rafaela C. Rodrigues1, Nerissa Williams1, Yan Ma1, Luke Borst3, Yongbaek Kim4, and David G. Kirsch1,2

1Department of Radiation Oncology and 2Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA. 3Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA. 4Laboratory of Veterinary Clinical Pathology, College of Veterinary Medicine, Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 151-742, South Korea.

Exposure to ionizing radiation can cause acute toxicity and long-term side effects, such as radiation-induced cancer. While inhibition of the tumor suppressor p53 ameliorates acute hematological radiation toxicity in mice, this approach may increase the risk of radiation-induced cancer because radiation accelerates tumor development in mice with germline knockout of p53. Recent studies indicate that activation of p53 by the DNA damage response is dispensable for p53-mediated tumor suppression, suggesting that preventing acute toxicity by blocking p53 during irradiation will not increase the risk of radiation-induced cancer. To test this hypothesis, we investigated the effects of temporarily blocking p53 during total-body irradiation (TBI) with 320 kVp X-rays on tumor formation using transgenic mice harboring a doxycycline (Dox)-inducible short hairpin RNA (shRNA) against p53. Unexpectedly, we observed that temporary knockdown of p53 during TBI not only ameliorated acute toxicity of the hematopoietic system, but also improved long-term survival of mice by preventing the development of thymic T-cell lymphoma. Lymphoma formation was preceded by clonal expansion of CD4hiCD8+ thymocytes with dysregulated Notch signaling. In addition to suppressing clonal expansion in the irradiated thymus, temporary knockdown of p53 during TBI improved fitness of hematopoietic stem/progenitor cells (HSPCs) in the bone marrow. These findings suggest that reversibly blocking p53 during irradiation is a promising approach to ameliorate acute toxicity without exacerbating radiation-induced cancer.