Heliophysics 2050 White Papers


Agency Programmatics

Heliosphere Science

Interstellar/Stellar/Exoplanetary Science

ITM Science

Magnetosphere Science

Solar Science

Space Weather Basic and Applied Research

Space Weather Operations







White Paper Title and Summary

Cohen I.   Rymer A.   Turner D.   Gkioulidou M.   Clark G.   Kollmann P.   Vines S.   Allen R.   Westlake J.   Nikoukar R.

Why and How to Increase Cross-Divisional Opportunities [#4073]
This white paper advocates for increased cross-NASA Divisional collaboration to mutually enhance the scientific return and impact of the heliophysics and other divisions.

Cohen I.   Gkioulidou M.   Turner D.   Nikoukar R.   Westlake J.   Higginson A.   McGranaghan R.   Emslie G.   Baker D.   Spence H.

What is Heliophysics? Our Field’s Ongoing Existential Crisis [#4074]
This white paper presents a vision for a bolder and broader definition of what heliophysics is and could be by 2050 with increased emphasis on the fundamental and universal importance of space plasma physics, more proactive community advocacy, and an appropriately scaled budget.

Gibson S. E.   de Toma G.   Qian L.   McGranaghan R.   Thompson B. J.   Wallace S.   Allen R. C.   Bagenal F.   Elliott H.   Filwett R.   Martinis C.   Rivera Y.

Connecting the Whole Heliosphere [#4050]
Characterizing the interconnected solar-heliospheric-planetary system can be challenging, due to a scarcity of opportunities for scientists within different disciplines to meet and work together on common science projects. As we move towards 2050, we must expand upon current solar minimum campaigns/collaborations to treat the whole heliosphere as an integrated system, thus cultivating a new generation of scientists with a powerfully interdisciplinary background.

Halford A. J.   Kellerman A. C.   Murray S. A.   McGranaghan R. M.   Mannucci A. J.   Fung S. F.   Jian L. K.   Cid C.   Klenzing J.   Carter B. A.   Zheng Y.   Rastaetter L.   Thompson B.   Garcia-Sage K.   Bingham S. J.

Tracking Heliophysics to 2050:  Using the Application Usability Levels to Ensure We Stay the Course [#4071]
Tracking a project or team’s productivity, progress, and usefulness can help manage institutional portfolios. Having a framework of metrics that are easy to use and interpret can show advancement towards goal fulfillment, the success of a program, identify where roadblocks exist, or new resources are needed, and help plan future directions. As we look towards 2050, adopting such a framework can help ensure progress towards identified science objectives.

Halford A. J.   Frissell N. A.   Glesener L.   Hartinger M.   Battams K.   MacDonald E.

Science for All:  The Benefits and Continued Need for Crowd Sourced Science [#4126]
1. Heliophysics requires solutions that address the cultural as well as the technical challenges. 2. The Zooniverse model of an open platform, available to researchers for free, has been instrumental in enabling projects to apply a crowdsourced science approach to data analysis. 3. Crowdsourced science is a proven approach that is inherently diverse, inclusive, and provides a powerful path to moving beyond traditional connections enabling new scientific outcomes and science literacy.

Lichko E.   Endrizzi D.   Juno J.   Olson J.   Dorfman S.   Young R.

Enabling Discoveries in Heliospheric Science Through Laboratory Plasma Experiments [#4065]
Resolving 3D physics occurring on multiple spatial and temporal scales is difficult with spacecraft and computer simulations alone, but can sometimes be studied much more easily with laboratory plasma experiments. This white paper proposes increasing funding for both human and physical infrastructure development in laboratory plasma facilities, as well as educating early-career scientists on how to better utilize laboratory experiments in their own research.

McGranaghan R. M.   Thompson B.   Halford A.

The Science of Team Science and Inclusivity in Heliophysics [#4087]
Heliophysics is inherently transdisciplinary and requires solutions that address the cultural as well as the technical challenges. We describe a new sensibility to overcome the cultural challenge that is guided by a plurality of thought and the science of team science. This white paper identifies an important and ongoing conversation about a cultural change needed to advance heliophysics science.

Reinecke D. M.   Brandt P. C.   Fountain G. H.   Rymer A. M.   Vertesi J. A.

The Team Science Challenges of Very Long Duration Spaceflight Missions [#4031]
The science goals of next-generation heliospheric and planetary missions may demand very long mission durations. A very long duration space science mission calls for not only a spacecraft designed for longevity, but also a team of scientists, engineers, and managers that can support the mission over the very long term. The paper offers some strategies for building and maintaining such a multi-generational science team.

Rivera Y. J.   Barnes W.   Higginson A.   Landi E.   Raymond J. C.   Reep J. W.

The Ongoing Development and Support of Atomic Physics in Solar and Heliospheric Science [#4040]
This white paper outlines the necessity for the availability, accessibility, and expansion of atomic physics values and analysis tools for the meaningful interpretation of spectroscopic observations, and their connection to the heliosphere. To this end, the paper discusses the need for improvement and development of atomic physics repositories and analysis tools through explicit funding to these projects and ongoing community level collaboration in the upcoming decades.

Samara M.   Michell R.   Zesta E.

The Need for Coordinated Ground-Space Observations of the Magnetosphere-Ionosphere-Thermosphere System [#4116]
In this white paper we want to highlight that coordinated ground-space measurements are critical in order to “characterize and understand how the ionosphere-thermosphere behaves as a system” and what they can reveal for magnetospheric dynamics, one of the standing unresolved problems in ionospheric system science.

Schonfeld S. J.   Higginson A. K.   Alterman B. L.   Kirk M. S. F.

HelioWeb:  A Resource for 21st Century Science [#4129]
To meet the ever-accelerating pace of heliophysics discovery, we need a new resource for the internet age, a single portal through which all heliophysics knowledge is cataloged, interlinked, and discoverable. We propose the creation of HelioWeb to facilitate scientific discovery, coordinate research efforts, develop collaborations, enable data and knowledge access, recruit and train new scientists, and educate the public.

Stough R. W.   Holt J. B.   Robinson K. F.   Smith D. A.   Hitt W. D.   Perry B. A.   McNutt R. L. Jr.   Paul M. V.

NASA’s Space Launch System Capabilities for Ultra-High C3 Missions [#4057]
Designed to meet NASA’s requirements for human exploration of the Moon, Mars, and beyond, the Space Launch System (SLS) vehicle offers enhancing and enabling capabilities for a variety of missions. Using commercially available propulsion systems as third and/or fourth stages, SLS offers C3 performance double the highest-C3 missions ever flown. This capability can be game-changing for missions into the interstellar medium or for high-energy solar observation missions.

Verniero J. L.   Juno J.   Sadykov V. M.   Wright P. J.   Schonfeld S. J.   Alterman B. L.

Guiding Heliophysics Toward an Enhanced Transdisciplinary Framework [#4117]
We outline steps toward a successful platform for transdisciplinary efforts applied to heliophysics. Such transdisciplinary research is critical to create a more holistic, sustainable approach to scientific research that does not only advance our understanding of the heliosphere, but also finds optimal pathways to NASA Heliophysics core objectives.

Westlake J. H.   Turner D. L.   Gkioulidou M.   Cohen I. J.   McNutt R. L. Jr.   Ho G. C.

Rethinking Innovation in the Explorer Class of Missions [#4098]
We propose a realignment of the Heliophysics Explorers mission around innovation and risk classification instead of the budgetary size. We posit that the SMEX class of missions are limited to Low Earth Orbit (LEO) due to the cost cap and that if the launch vehicle and operations costs were carried outside of the PI managed mission cost cap then a whole new class of innovative missions would compete for the SMEX mission class. We also note that the use of refurbished launch vehicles may also open similar doors beyond LEO for SMEX missions.

Zemcov M.   Biechman C.   Bock J.   Brandt P.   Chary R. R.   Cooray A.   Gorjian V.   Harman C. E.   Izenberg N.   Lisse C.   McNutt R.   Poppe A. R.   Paul M. V.   Street R. A.   Symons T.   Werner M.

Astrophysics from the Outer Solar System:  Leveraging Joint Missions to Maximize Science Return [#4042]
Astrophysical measurements from the outer solar system can enable science cases that are challenging or impossible to perform near the Earth. Though transformative, a mission to the distant solar system including modern instrumentation designed to perform astrophysical science has never been flown. Here we briefly describe the science motivations for such an instrument and advocate for flight opportunities that support cross-divisional cooperation to enable these kind of science investigations.





White Paper Title and Summary

Alzate N.   Seaton D.   Kirk M.   Morgan H.   Di Matteo S.

The Sun-Earth Connection as a Single System:  Data Analysis and Processing Needs of Current and Future Missions [#4108]
Increasingly, diverse data sets are being used to understand the Sun-Earth connection. However, current datasets and tools are not always used to their full extent. By 2050, a suite of tools and techniques would be the basis for the extensive and optimal use of archived datasets and new observations other than setting the basis for future missions.

Bobra M. G.   Barnes W. T.   Cheung M. C. M.   Hayes L. A.   Ireland J.   Janvier M.   Kirk M. S. F.   Mason J. P.   Mumford S. J.   Wright P. J.

Science Platforms for Heliophysics Data Analysis [#4022]
We recommend that NASA maintain and fund science platforms that enable interactive and scalable data analysis in order to maximize the scientific return of data collected from space-based instruments.

DeMajistre R.   Brandt P. C.   Mitchell D. G.   McNutt R.   Roelof E. C.   Provornikova E.   Gkioulidou M.   Mostafavi P. S.   Nikoukar R.   Westlake J.   Opher M.   Dialynas K.   Kornblueth M.   Galli A.   Gruntman M.   Reisenfeld D.   Kubiak M.   Sokół J. M.   Fuselier S.

Sensing the Shape and Global Structure of the Heliosphere [#4025]
Despite the importance of understanding the physics and habitability of our astrosphere, its global structure and the plasma processes that shape it continue to be mysteries. Our paper describes a set of questions about the structure of the heliosphere that can be more easily answered via Energetic Neutral Atom (ENA) imaging from a vantage point outside of the heliosphere.

Dialynas K.   Krimigis S. M.   Decker R. B.   Mitchell D. G.   Roelof E.  C.   Brandt P. C.   Burlaga L.   Della Torre S.   DeMajistre R.   Galli A.   Gkioulidou M.   Hill M. E.   Kornbleuth M.   Kurth W.   McNutt R.   Mostafavi P. S.   Nikoukar R.   Opher M.   Powell E.   Provornikova E.   Rancoita P. G.   Richardson J. D.   Roussos E.   La Vacca G.   Westlake J.

The Dynamic Heliosphere and Its Interaction with the LISM:  Open Questions and Future Perspectives [#4038]
We discuss three open science questions concerning the interaction of the heliosphere with the LISM, that can only be answered by exploiting a combination of in-situ ion measurements and remotely sensed ENAs:  1) Where are the heliosphere boundaries and how thick is the HS?, 2) A “missing” pressure component towards exploring the dynamics of the global HS and its interaction with the LISM?, 3) Why is the shape and size of the global heliosphere different when looking in different ENA energies?

Eriksson S.   Mallet A.   Swisdak M.   Opher M.   Provornikova E.   Bale S. D.   Desai M.   Alexandrova A.

Magnetic Reconnection Science in the Outer Heliosphere [#4036]
Magnetic reconnection is a key mechanism that converts magnetic field energy into bulk flow energy, particle acceleration, and plasma heating. Reconnection exhausts are observed across inner heliosphere current sheets of many spatial scales. We do not know if reconnection ruptures current sheets in the solar wind beyond Jupiter, through the HS, across the HP, or even beyond in the LISM itself. Is reconnection truly a universal space plasma process that occurs in the whole heliosphere and beyond?

Fraternale F.   Zhao L. L.   Pogorelov N. V.   Sorriso-Valvo L.   Zank G. P.

Exploring Turbulence from the Sun to the Local Interstellar Medium Using Interstellar Probe [#4114]
We present a survey of the principal turbulence-related science questions Interstellar Probe (IP) will encounter along its trajectory in the distant heliosphere and in the VLISM. The production and dissipation of turbulence, its interplay with energetic particles, shock waves, and magnetic reconnection are fundamental aspects of the heliospheric and interstellar plasma physics. Unlike any previous missions at such distances, IP should be designed to investigate fluctuations on all relevant scales.

Linsky J. L.   Redfield S.

What Lies Outside of the Heliosphere:  Connecting the Outer Heliosphere with the Interstellar Medium [#4007]
This white paper describes critical science questions concerning the plasma and magnetic fields in the Very Local Interstellar Medium (VLISM) and the Local Interstellar Medium (LISM). The VLISM is the region extending from the heliopause (roughly 120 AU) to about 600 AU where the inflowing interstellar plasma charge exchanges and is otherwise modified by energetic solar wind ions. The LISM consists of warm partially ionized clouds and surrounding ionized plasma that envelopes the VLISM.

Lugaz N.   Al-Haddad N.   Török T.   Farrugia C. J.   Palmerio E.   Jian L. K.   Lynch B. J.   Winslow R.   Vourlidas A.   Lee C. O.   Merkin V. G.   Zhang J.   Luhmann J.   Gibson S.   Colaninno R.   Thompson B. J.   Manchester W. B.

The Importance of Fundamental Research on the Coronal and Heliospheric Evolution of Coronal Mass Ejections [#4017]
Coronal mass ejections (CMEs) are a cornerstone of heliophysics research. It is essential to address the coronal and interplanetary evolution of CMEs, independent of their space weather impact through a comprehensive research program. Such a program should include components of data analysis, theory and code development, and lead to new missions, and instrumentation, especially for smallsat/rideshare and explorer categories.

Mason E. I.   Higginson A. K.   Rivera Y. J.   Weberg M.   Spitzer S. A.   Alterman B. L.

The Need for Consistent, Comprehensive Inner Heliosphere Data [#4048]
The science goal presented in this white paper is the capability to reliably track individual packets of solar wind from the low corona to 1 AU by 2050. The field currently faces a significant measurement gap along the Earth-Sun line, and near-complete inaccessibility to the rest of the inner heliosphere. In order to remedy this situation and accomplish the above goal, we need reliable, high-resolution compositional data with 4pi coverage of the Sun evenly spaced throughout the 0-1 AU range.

Mayyasi M.   Quemerais E.   Katushkina O.   Goodwin L.   Linsky J.   Clarke J.   Izmodenov V.   Baliukin I.

Using Lyman-a to Probe the Interior and Edges of the Heliosphere [#4003]
Understanding the role of neutral atoms in the heliospheric interface (between the bow shock and heliopause) is critical to identifying dynamics within our local bubble. This white paper recommends building upon existing measurements with new, high-spectral resolution observations of H Lyman-a, from a heliospheric mapping mission, to resolve the momentum exchange in reactions between the Solar Wind and Energetic Neutral Atoms that are key to identifying the most important heliospheric processes.

Mostafavi P.   Merkin V. G.   Provornikova E.   Raouafi N. E.   Velli M.   Zank G. P.   Sorathia K.   Allen R. C.   Arge N.   Matthaeus W.   Bourouaine S.   Maruca B.   Bandyopadhyay R.   Spence H.   Klein K.   Verniero J.   Lichko E.

High-Resolution Modeling of the Solar Wind Turbulence:  From Global to Micro-Scales [#4069]
This white paper is about the high-resolution modeling of the solar turbulence in the inner heliosphere. The goal is to develop ultra-high-resolution global MHD and non-MHD models that can reach into the dissipation range and capture the multi-scale physics of the solar wind by 2050. The desired models should start from the chromosphere all the way through the heliosphere.

Mostafavi P.   Zank G. P.   Roelof E.   Burlaga L.   Richardson J.   Decker R.   Provornikova E.   Opher M.   Demajistre B.   Turner D. L.   McNutt R.   Brandt P.   Dialynas K.   Hill M. E.   Merkin V. G.   Rankin J.   Zirnstein E.   Florinski V.

Shock Waves Propagation Beyond the Heliosphere:  How Far Does the Sun’s Influence Extend into the Interstellar Medium? [#4090]
This White Paper is about the propagation of heliospheric shock waves beyond the heliosphere in the interstellar medium. The need is to improve our understanding of the heliosphere-local interstellar medium interaction to understand how far the Sun’s influence extend into the interstellar medium.

Mukherjee S. PhD

Changes in Heliophysical Parameter on Global Environment and Health [#4131]
It has been well documented that climatic change has the potential to influence the Environment of the Earth in Space and time. Influence of Heliophysical parameters and Galactic Cosmic Rays on the Environment and Health of the living beings of the Earth are being studied. The outbreak of Pandemic COVID 19 and the future threat of various health hazards for the living organisms of the Earth need to be studied in detail by the variables of Sunspots, Star spots, and Cosmic Ray data.

Opher M.   Zank G.   Florinski V.   Fuselier S.   Giacalone J.   Toth G.   Richardson J.   Drake J.   Swisdak M.   Zieger B.   Galli A.   Dayeh M.   Tenishev V.   Izmodenov V.   Kornbleuth M.   Powell E.   Boliukov I.   Zirnstein E.   Michaels A.   Dialynas K.   Krimigis S.   Cummings A.   Decker R.   Elliott H.   Gkioulidou M.   Hill M.   Nikoukar R.   Roussos E.   Szabos A.   Kota J.   Provornikova E.   Mostafavi P.   Brandt P.   McNutt R.   Gombosi T.   Stone E.   Schwadron N.   Stern A.   Loeb A.

Our Heliospheric Shield, a Case of a Habitable Astrosphere:  Open Science Questions [#4030]
The heliosphere is an immense shield that protects the solar system from harsh galactic radiation. The heliosphere is a window into processes occurring in all other astrospheres. The in-situ measurements by the Voyager, Pioneer, and New Horizon spacecraft combined with the all-sky ENA images of the heliospheric boundary region have transformed our understanding of the heliosphere. However, many fundamental features of the heliosphere are still not well understood.

Provornikova E.   Katushkina O. A.   Herbst K.   Engelbrecht N. E.   Brandt P. C.   McNutt R. J.   Lisse C.   Opher M.   Richardson J. D.   Izmodenov V. V.   Mostafavi P.   Merkin V. S.   Baliukin I. I.   Korolkov S. D.   Higginson A. K.   Sterken V.   Harman C. E.

Our Global Heliosphere:  Toward Understanding Astrospheres Around Other Stars [#4060]
New measurements at the heliospheric boundary and in the local interstellar medium (ISM) are required in the near-term to resolve the fundamental questions about the nature of the global heliosphere. Understanding this region is necessary to enable future longer-term investigations at the intersection of the heliophysics and astrophysics fields, aimed at exploring the structure and evolution of other astrospheres and their role in habitability of the exoplanets that they host.

Rivera Y. J.   Higginson A.   Lepri S. T.   Viall N.

Multi-Point Compositional Measurements of Solar Wind and Transient Phenomena [#4103]
Continuous 4π coverage of compositional measurements to develop a comprehensive understanding of the method of release and energization of the solar wind and transients.

Summerlin E. J.   Pulkkinen A. A.   Korendyke C.   Vourlidas A.

Solar Tomography Revolutionizing Long Lead Space Weather Prediction by 2050 [#4055]
The STEREO mission gave us a glimpse of the capabilities of multi-spacecraft imaging to resolve coronal structures and extract information vital to modeling and forecasting solar events. However, while significant progress has been made over the past two decades in understanding CMEs and associated energetic charged particles, new technologies can now enable the additional viewpoints needed for solar tomography to uncover the complex three-dimensional (3D) internal structure of CMEs.

Viall N. M.   Borovsky J.   Kepko L.   Higginson A.   Vourlidas A.   Di Matteo S.   Mason E.   Alzate N.   Seaton D.

Outstanding Questions in Solar Wind Physics [#4066]
There are major outstanding questions regarding solar wind formation and its evolution as it advects through the heliosphere. Synthesizing inputs from the solar wind research community, nine outstanding questions of solar wind physics from a recent AGU Grand Challenges review paper are described in this white paper, as well as potential solutions.

Wilson L. B. III

Accurate Measurements of Thermal Velocity Distribution Functions in the Solar Wind [#4001]
We currently lack the cadence and resolution to properly resolve the thermal plasma populations in the solar wind near Earth to the accuracy required to address fundamental issues in kinetic theory, plasma turbulence, and wave-particle interactions. This white paper outlines current measurements and what is needed to make progress on these fundamental physics issues.

Zhang S.-R.   Foster J. C.

Geospace and Interdisciplinary Sciences Enabled by Global Observational Networks [#4105]
The ionosphere, upper and middle atmosphere system can be used as tracers of dynamic perturbations developing above and below them, serving as a planetary-scale spherical screen on which one can detect, study, and characterize these disturbances. We suggest prioritizing instrumentation investment in the vicinity of the Great Meridian Circle 60W/120E across the Eastern American sector. The instrumentation includes networks of radio, optical, geomagnetic sensors, and capable central observatories.





White Paper Title and Summary

Brandt P. C.   McNutt R. L. Jr   Provornikova E.   Wimmer-Schweingruber R.   Mostafavi P.   DeMajistre R.   Mandt K.   Lisse C.   Runyon K. D.   Rymer A.   Krimigis S. M.   Roelof E. C.   Paul M. V.   Blanc M.   Merkin V.   Alkalai L.   Alterman B.   Baker D. N.   Bale S.   Baliukin I.   Barabash S.   Bertaux J. L.   Beichman C.   Błądek P.   Bzowski M.   Cahill J.   Clarke J.   Christian E.   Cooper J.   Decker R.   Desai M.   Dialynas K.   Elliott H.   Eriksson S.   Fedorov A.   Frisch P.   Funsten H. O.   Fuselier S.   Galli A.   Gladstone R.   Gurnett D.   Gloecker G.   Gruntman M.   Hill M. E.   Horanyi M.   Izmodenov V.   Kempf S.   Katushkina O.   Kozanecki M.   Kurth W.   Ratkiewicz R.   Lallement R.   Lavraud B.   Linsky J.   Livi S.   Liewer P.   Mayyasi M.   Mewaldt R.   Mikołajków T.   Miś T. A.   Mitchell D. G.   Moebius E.   Nicolaou G.   Nikoukar R.   Opher M.   Park J. -W.   Paschalidis N.   Paxton L.   Pogorelov N.   Poppe A.   Quemerais E.   Redfield S.   Reisenfeld D. B.   Richardson J.   Retherford K.   Schwadron N.   Sokół J. M.   Sterken V.   Stern A.   Szabo A.   Szalay J. R.   Tkacz A.   Turner D.   Wicks R.   Wang C.   Wood B.   Zank G.   Zemcov M.   Wurz P.   Zarka P.   Zong Q.

Expanding the Realm of Solar and Space Physics:  Exploration of the Outer Heliosphere and Local Interstellar Medium [#4099]
The paper discusses the current state of understanding, outstanding questions, and measurements for exploring the outer heliosphere and the Local Interstellar Medium towards 2050.

Hill M. E.   Giacalone J.   Florinski V. F.   Opher M.   Turner D. L.   Alan R. C.   Brandt P. C.   Cummings A. C.   Decker R. B.   Dialynas K.   Kollmann P.   Kota J.   Leske R. A.   Mewaldt R. A.   McNutt R. L. Jr.   Mostafavi P.   Nikoukar R.   Provornikova E.   Richardson J. D.   Roelof E. C.   Zank G. P.

Galactic Cosmic Rays Near the Interstellar Interface [#4097]
This white paper is a description of the open scientific questions related to galactic cosmic rays as observed in the local interstellar medium as well as the outer heliosphere and heliosheath. For purposes ranging from understanding the details of solar transients, to the shape of the heliosphere, to probing supernovae throughout the galaxy, galactic cosmic rays, after over a century of study, remain of vital scientific interest and the prospects for continued, deepening knowledge punctuated by occasional discoveries is very good.

Majumdar A. M. Mr.   Zirnov S. Z. Mr.   Mardon A. M. Dr.

The Seven Brightest Planets in Ancient Roman Culture [#4112]
My message to the group of spectators especially explicitly is to certainly investigate Venus by unquestionably conducting genuinely more research. On account of this point, Indian Space Research Association (ISRO) certainly is going to truly dispatch rocket GSLV MK-3 of every 2023 to learn about Sun-Venus collaboration, innovation showing science experiments, investigation of the planet, and especially asteroids for logical accomplishment, explicitly explore about powered breeze Sun.

Szalay J. R.   Altobelli N.   Brandt P.   Czechowski A.   Frisch P.   Horanyi M.   Hsu S.   Krüger H.   Lisse C. M.   Mann I.   Pokorný P.   Poppe A. R.   Slavin J.   Srama R.   Sterken V.   Sternovsky Z.   Zemcov M.

The Heliosphere’s Interaction with Interstellar Dust [#4043]
Interstellar dust (ISD) grains continuously flow through our heliosphere and are filtered by size and composition. There have been multiple measurements of ISD in the heliosphere, yet there are many unresolved questions about how our heliosphere interacts with ISD in our local interstellar neighborhood. We propose future observations made throughout the heliosphere and outside the heliopause, within the pristine interstellar medium, are critical to propel our knowledge of ISD.





White Paper Title and Summary

Bhatt A. B.

Achieving Closure on the Question of Energy and Momentum Coupling Between the Lower and the Upper Atmosphere [#4122]
This white paper proposes a potential path to achieving closure on the topic of energy and momentum coupling between lower and upper atmosphere through mechanisms like gravity waves.

Borovsky J. E.   Delzanno G. L.   Henderson M. D.   Carlsten B. E.   Donovan E.   Dors E.   Fernades P.   Gilchist B.   Holloway M.   Johnson J.   Kepko L.   Lewellen J.   Marshall R.   Miars G.   Neilsen J.   Nguyen D.   Rowland D.   Reeves G.   Sanchez E.   Skoug R.

A Concept to Unambiguously Establish Magnetosphere-Ionosphere Connections and to Determine the Magnetospheric Causes of Aurora [#4012]
A research roadmap is outlined in response to a technology-development recommendation in the National Research Council 2013 Decadal Survey. This technology development is for magnetic-field-line tracing between the magnetosphere and the ionosphere focused in this white paper on solving the outstanding problem of how the magnetosphere drives aurora.

Chartier A. T.

Trace the Flow of Energy from Space into the Atmosphere [#4124]
Electromagnetic energy constitutes a major input to Earth’s upper atmosphere, more important than solar radiation during active magnetic periods, and harder to characterize at all times. The heliophysics community should aim to trace the flow of electromagnetic energy into the atmosphere, and to obtain self-consistent measurements of the energy balance throughout the system. This activity is likely to have a major impact on high-latitude space weather specification and prediction.

Clemmons J. H.   Swenson G. R.   Vargas F.   Dragic P.

The Need for – and Promise of – 3D Measurements in the Ionosphere-Thermosphere System [#4070]
The need for thorough 3D sampling of the heliophysical domain is discussed and used to motivate the idea that active remote sensing techniques, when deployed on orbiting platforms, can provide a next-generation capability for the needed sampling without requiring huge numbers of instrumented satellites.

Cohen I.   Anderson B.   Vines S.   Bonnell J.   Lessard M.   Lysak B.   Michell R.   Varney R.

In-Situ Investigations of the Structure of Ionospheric Closure Currents [#4072]
Ionospheric closure currents are critical to understanding the nature of atmosphere-ionosphere-magnetosphere coupling and have relevance to space weather parameters such as ionospheric densities, thermospheric heating, and satellite drag. This white paper provides motivation for a sounding rocket mission concept using the novel deployment of multiple CubeSats as miniature sub-payloads to obtain the first direct in-situ measurement of these ionospheric currents.

Delzanno G. L.   Borovsky J. E.   Buzulukova N.   Chappell C. R.   Denton M.   Fernandes P.   Friedel R.   Gallagher D.   Goldstein J.   Henderson M.   Larsen B.   Jordanova V.   Moore T.   Reisenfeld D.   Roytershteyn V.   Skoug R.   Varney R.

The Need to Understand the Cold-Ion and Cold-Electron Populations of the Earth’s Magnetosphere:  Their Origin, Their Controlling Factors, and Their Impact on the System [#4033]
The cold-particle populations (with energy less than ~100 eV) of the Earth’s magnetosphere are sparsely measured and very poorly understood but play a critical role in the dynamics of the system, both locally and globally. A research plan combining the development of new measurement techniques, data analysis, and theory and modeling is necessary to definitively understand the cold-particle populations. Without such understanding, the magnetosphere-ionosphere system cannot be fully understood.

Eastes R. W.   Burns A. G.   Solomon S. C.

Advancing Ultraviolet Remote Sensing for Thermosphere-Ionosphere Forecasting in 2030 and Beyond [#4095]
Far Ultraviolet (FUV) remote sensing has shown potential for providing critical information to make better forecasts of the upper atmosphere system, an important region for space weather responses. This document suggests needed advances for future use of FUV remote sensing.

Hysell D. L.   Milla M. A.

An Ionospheric Modification Facility for the Magnetic Equator [#4004]
We argue the possible benefits of constructing an HF ionospheric modification facility near the magnetic equator. Ionospheric modification experiments yield incisive information about important processes including wave-particle interactions and electron acceleration that informs closely-related but hard-to-access processes in the ionosphere and magnetosphere. They also serve as diagnostics for ionospheric and atmospheric state variables that are difficult to measure using other methods.

Ilie R.   Lin M-Y.   Glocer A.   Bashir M-F.

The Need for Detailed Ionic Composition of the Near-Earth Plasma [#4094]
We discuss the need for detailed ionic composition, that can distinguish between ions with close masses (such as nitrogen and oxygen), and also molecular species.

Klenzing J.   Zawdie K. A.   Belehaki A.   Blanch E.   Burleigh M.   Frissell N.   Huba J.   Kaeppler S.   Narayanan V. L.   Smith J.   Xiong C.   Yokoyama T.   Zettergren M.

Medium Scale Traveling Ionospheric Disturbances (MSTIDs) — A Heliophsyics 2050 Roadmap [#4104]
The formation and development of Medium Scale Traveling Ionospheric Disturbances (MSTIDs) are compelling because of the immediate practical implications for communications and geolocation. Additionally, the dynamics and interplay between the thermosphere and the ionosphere creating and resulting from these structures are still unresolved. This is due in part to the unpredictable nature of their occurrence and lack of global measurements, as well as the lack of measurements of the proposed drivers.

Knipp D. J.   Verkhoglyadova O. P.   Lynch K. A.   Morton J.

Understanding and Quantifying Multi-Scale Poynting Flux and Its Fate in the Coupled Magnetosphere-Ionosphere-Thermosphere System [#4125]
The magnetosphere/solar-wind dynamo is the primary source of the auroral and electromagnetic energy to the high-latitude thermosphere and ionosphere. This energy source may be responsible for > 60% of the energy input during extreme space weather events. Impulsive increases in energy deposition are linked to the inability to track LEO spacecraft. With near exponential increases in cubesat launches, this poor characterization could be disastrous for satellite collision avoidance efforts.

Lieberman R. S.   Yudin V.   Goncharenko L.   Harvey V. L.   Yue J.   France J.   Pawson S.

Upper Atmosphere Reanalysis in the Goddard Earth Observing System for Space Weather Applications and Support of Heliophysics Missions (GEOS-H) [#4107]
Reanalysis refers to the processing of observational data spanning an extended period using a single, consistent assimilation (or “analysis”) scheme. The goals of this white paper are to extend Goddard’s GEOS-5 weather and climate model into the thermosphere-ionosphere, and to initiate and coordinate institutional and agency collaborations that will lead the heliophysics community to the first reanalysis of the mesosphere and lower thermosphere.

Lynch K. A.

Helio2050:  Ionosphere-Thermosphere System Science and the Use of Distributed Heterogeneous Data Arrays:  Vector Fields, Volumetric Densities, Auroral Imagery [#4100]
We focus on tools and techniques for the use of new heterogenous distributed observations for ionosphere system science, including distributed vector data, volumetric plasma density data, and invertible filtered auroral imagery. Rigorous representation of distributed vector fields in the context of tomography and imagery data is fundamental to a system-level understanding, requiring tools for interpretation and manipulation of distributed datasets for data-driven ionospheric system science.

Ozturk D. S.   Garcia-Sage K.   Connor H. K.   Robinson R. M.   Gabrielse C.   Chen M. W.   Kaeppler S. R.   Mukhopadhyay A.   Shprits Y.   Walker R.   Burleigh M.   Jordanova V. K.   Zheng Y.   McGranaghan R.   Rastaetter L.   El Alaoui M.   Knipp D. J.   Lin D.   Halford A. J.   Vines S. K.   Zou S.   Merkin V. G.   Edwards T. R.   Liemohn M. W.   Weimer D.   Krall J.   Young M.   Yu Y.   Lotko W.   Matsuo T.   MacDonald E.

A Collaborative Approach to Understanding Auroral Region Magnetosphere-Ionosphere-Thermosphere Coupling Through Ionospheric Conductivity [#4067]
The ionospheric conductivity provides a link between the ionosphere/thermosphere and the magnetosphere systems. Therefore, an accurate and self-consistent global ionospheric conductivity model is necessary to understand how these systems couple. Due to the various different phenomena that drive each system separately a collaborative approach to predicting and quantifying uncertainties in calculations of ionospheric conductivity is needed.

Pfaff R.   Rowland D.

Planetary Electric Fields [#4113]
Electric fields constitute a fundamental aspect of all planets that are very poorly known and understood. Such potential structures exist on planets with and without magnetic fields and represent both dynamic plasma variability as well as large scale static structures. Understanding how planetary electric fields are set up and vary represents an important next step to understanding planets both in our solar system as well as orbiting around other stars.

Pfaff R.   Rowland D.

Understanding the Earth’s Global Electric Field [#4115]
The Earth’s global electric field is a fundamental aspect of nature that is not well known. The highly variable potential structure that surrounds the Earth — from the Earth’s surface to the magnetosphere — varies considerably with altitude, latitude, and local time, and needs to be measured and understood from a global perspective.

Rowland D. E.   Kepko E. L.   Pfaff R. F.   Glocer A.   Garcia-Sage K.

Investigating Bidirectional, Multiscale, and Nonlinear Feedback in Plasma-Neutral Coupling, Using Geospace as a Natural Laboratory to Study Universal Phenomena [#4130]
Partially ionized gases (and coupled systems of ionized and neutral gases) are ubiquitous and universally important for understanding flows of energy, momentum, and mass. Geospace serves as a “natural laboratory” that is readily accessible and that can be used to explore how ionized and neutral gases, under a variety of drivers, interact to produce complex, multiscale, and nonlinear feedback that is bidirectional, and which modifies both the ionized and neutral populations.

Swenson G. R.   Vargas F.   Dragic P.

Vertical Transport Cycling and Climatology of MLT Constituent (e.g. Ox, Hx,COx, HOx) Distributions, 80–150 km [#4049]
The climatology of minor species in the 80–150 km is important to the thermodynamics of the region, especially carbon dioxide and methane, which have large cooling effects on the region. Atomic oxygen, HOx, and COx, all participate in a cycling process, which can only be understood (modeled), only as well as the chemistry and vertical diffusion transport. A method of achieving the measurements involves an atomic oxygen LIDAR, a technology requiring development.

Swenson G. R.   Vargas F.   Dragic P.   Clemmons J.

Global Thermospheric Heating via Gravity Wave Dissipation, 80–400 km, and Active Remote Sensing with LIDAR [#4064]
An important energy source entering the thermosphere includes gravity waves, coupling upward from the lower atmosphere. Global observations of gravity waves, and their effects above 110 km are non-existent. Vertical distributions of atomic oxygen depart from diffusive equilibrium, when waves are present. An O LIDAR (135.6 nm) is suitable to measure O density and Doppler temperatures from 80–400 km, but requires a long term, technological development.

Varney R. H.   Coster A. J.   Erickson P. J.   Hysell D. L.   Kendall E.

2050 Vision for Geospace Radio Science [#4102]
Recent advances in radio technology will enable the construction of future facilities that will be so flexible that they can conduct multiple different types of radar and radio observations simultaneously. This technology could advance studies of neutral dynamics in the mesosphere and lower thermosphere, ionospheric electrodynamics at multiple scales, cold plasma circulation, and plasma kinetic theory. New facilities could also enable high-risk, high-reward discovery science.

Volz R. A.   Erickson P. J.   Palo S. E.   Chau J. L.   Vierinen J. P.

A Global Radio Remote Sensing Network for Observing Space Weather Dynamics [#4127]
Our current sampling of the near-Earth space environment is wholly insufficient to measure the highly variable processes therein and make predictions on par with lower atmospheric weather. We sketch out the scientific rationale for a network of radio instruments delivering dense observations of the near-Earth space environment and the broad steps necessary to implement wide-scale coverage in the next 30 years.





White Paper Title and Summary

Andersson L.   Thaller S.   Malaspina D. M.

Bulk Plasma Dynamics on Large Scales [#4011]
The next 20–50 years of magnetospheric space plasma research should focus on cold plasma dynamics using a system-wide approach, instead of relying on individual platform/instrument observations.

Buzulukova N.   Fok M.-C.   Sibeck D.   Keesee A.   Connor H.   Collier M.   DeMajistre R.   Glocer A.   Murphy K.

Global Imaging of the Earth’s Magnetosphere with Energetic Neutral Atom (ENA) Detectors:  Transforming Discoveries Demand Breakthrough Technologies [#4024]
Global imaging is crucial for the development of SW prediction tools. It will help to differentiate between different modes of magnetospheric behavior. If successful, future ENA missions will answer many questions about magnetospheric dynamics that the community has been debating. Future developments in stereoscopic missions with large geometrical factor for the energy range 1–100 keV will significantly advance magnetospheric imaging, making possible the discoveries that will transform the field.

Chen L.-J.   Collier M.   Dorelli J.   Fung S.   Gershman D.   Karpen J.   Michell R.   Ng J.   Rowland D.   Samara M.   Sibeck D.   Wang S.

Kinetic Effects of Solar Driving on Magnetospheres [#4083]
In this white paper, we discuss kinetic effects of solar driving on magnetospheres and interconnected science topics envisioned for future major research directions in heliophysics. We recommend (1) promotion of global particle simulations to address how these kinetic effects impact the evolution of magnetized planets and bodies in the heliosphere, past and present; and (2) advancing NASA’s high-end computing to exascale to provide the critical ground for (1).

Crary F.   Delamere P.   Dong C.   Ebert R.   Hospodarsky G.   Hsu H.-W.   Livengood T.   Roussos E.   Szalay J.   Vogt M.

The Magnetosphere of Jupiter:  Moving from Discoveries Towards Understanding [#4101]
We present some of the outstanding questions needed to truly understand Jupiter’s magnetosphere and note that these questions can be answered by small, focused missions. Such missions are a fruitful place for collaboration between NASA’s heliophysics and planetary science directorates.

Fernandes P. A.   Delzanno G. L.   Denton M. H.   Henderson M. G.   Jordanova V. K.   Kim T. K.   Larsen B. A.   Maldonado C. A.   Reeves G.   Reisenfeld D. B.   Skoug R. M.

Heavy Ions:  Tracers and Drivers of Solar Wind/Ionosphere/Magnetosphere Coupling [#4047]
The dearth of modern plasma composition measurements in space and our poor understanding of differences in plasma processes driven by different heavy ions inhibit our ability to predict and characterize natural and man-made events in the near-Earth space environment. We propose a community goal of characterizing the full complement of plasma species (composition and charge state) within the Solar Wind/Ionosphere/Magnetosphere (SW/I/M) system to understand how these populations interact with one another and impact the system as a whole.

Goldstein J.   Gallagher D. L.   Molyneux P.   Reeves G. D.

Core-Plasma Refilling and Erosion:  Science Justification [#4063]
By 2050 GGCMs need to couple dynamic plasmasphere models. This requires answering basic questions about erosion and refilling of plasmaspheric plasma. During storms, tens of metric tons of plasma are rapidly eroded, then slowly replenished. We still do not understand the cross-scale mechanisms proposed to be responsible for the cycle of this enormous plasma mass—as important to geospace dynamics as solar-wind driving. We must dedicate the resources and effort needed to solve this enduring puzzle.

Hartinger M. D.   Engebretson M. J.   Lu G.   Connors M. G.   Dimmock A. P.   McGranaghan R.   Rigler E. J.   Shi X.   Kim H.   Salzano M. L.

Towards a Better Understanding of the Causes and Consequences of Geomagnetic Perturbations:  Remote Sensing, Diagnostics for Heliophysics Research, and Geomagnetically Induced Currents [#4068]
Disturbances in the magnetic field at the Earth’s surface are at the center of Heliophysics Research:  remote sensing magnetosphere-ionosphere current systems, construction of geomagnetic indices used for space weather forecasts and model validation, monitoring of geoelectric fields, and related Geomagnetically Induced Currents (GIC). The purpose of this white paper is to highlight future research that is needed to improve our understanding of the causes and consequences of these perturbations.

Jaynes A. N.   Randall C.   Bailey S.   Baker D. N.   Kanekal S. G.   Marshall R. M.   Huang C.-L.   Fang X.   Harvey V. L.   Rodger C.   Blake J. B.   Turner D. L.   Blum L. W.

A Call for Interdisciplinary Science Focusing on How Particle Precipitation from the Magnetosphere Affects Earth’s Atmosphere [#4123]
As we look forward to 30 years from now, we should intentionally shift away from a traditionally siloed science and toward a more interdisciplinary approach to understanding the Sun-Earth system. Energetic particle precipitation is the primary source of nitrogen oxides (NOx) in the polar upper atmosphere, which is known to catalytically destroy stratospheric ozone. We still don’t understand how energy from the Sun and space is absorbed and transported in the layers of the atmosphere.

Kepko L.   Merkin S.   Viall N.   Vourlidas A.   McIntosh S.

Mesoscale Dynamics — The Key to Unlocking the Universal Physics of Multiscale Feedback [#4041]
The systems we study in heliophysics — the extended solar atmosphere, the solar-wind, the magnetosphere, and the MIT system — are all highly complex, multi-scale systems. The undersampled mesoscale regime is crucial to study and we believe could be a unifying focus of heliospheric research in the coming decades.

Kollmann P.   Turner D. L.   Roussos E.   Nenon Q.   Clark G.   Cohen I.   Li W.   Sulaiman A.

Jupiter’s Radiation Belts as a Target for NASA’s Heliophysics Division [#4026]
NASA’s heliospheric division studies “the Sun, the heliosphere, and Earth’s magnetosphere and... universal plasma phenomena.” Here we argue that Jupiter’s magnetosphere and radiation belts should be considered as relevant targets for NASA’s Heliophysics missions. Jupiter’s magnetosphere covers all universal processes called out in the 2013 Decadal and provides a unique opportunity to study processes with less ambiguity than at the Earth and potentially in the heliosphere.

Merkin V. G.   Sorathia K. A.   Lyon J. G.   Ukhorskiy A. Y.   Wang W.   Huba J.   Liu H.-L.   Varney R.   Sitnov M. I.   Delzanno G. L.   Lin Y.   Liu Y.-H.

Active Geospace:  2050 Vision for First-Principles Modeling [#4006]
Because of the collective nature of the cross-domain and cross-scale interactions within geospacer, the space science community still lacks a basic understanding of how this physical system behaves as a whole during varying solar wind conditions. In the upcoming age of exascale supercomputing, more diverse and powerful computing technology will undoubtedly usher in a new era of physics-based approaches for geospace modeling that will become feasible well before 2050.

Pfaff R.   Rowland D.

Earth’s Electromagnetic Environment in Space [#4120]
The Earth’s geospace region is replete with plasma waves of natural and human-made origin. In particular, the electromagnetic waves that fill the geospace region — from lightning to powerline radiation to Schumann resonances — are a fundamental part of our environment with important consequences for heating the upper atmosphere which must be measured and understood from a global perspective.

Sitnov M. I.   Stephens G. K.   Merkin V. G.   Wang C. P.   Turner D.   Genestreti K.   Argall M.   Ukhorskiy A. Y.   Wing S.   Liu Y. H.

Artificial Intelligence to Enhance Mission Science Output for In-Situ Observations:  Dealing with the Sparse Data Challenge [#4015]
In the Earth’s magnetosphere, there are fewer than a dozen dedicated probes beyond low-Earth orbit making in-situ observations at any given time. As a result, we poorly understand its global structure and evolution, the mechanisms of its main activity processes, magnetic storms, and substorms. New Artificial Intelligence (AI) methods, including machine learning, data mining, and data assimilation, as well as new AI-enabled missions will need to be developed to meet this Sparse Data challenge.





White Paper Title and Summary

Arge C. N.   Jones S.   Henney C. J.   Schonfeld S.   Vourlidas A.   Muglach K.   Luhmann J. G.   Wallace S.

Multi-Vantage-Point Solar and Heliospheric Observations to Advance Physical Understanding of the Corona and Solar Wind [#4056]
To significantly advance basic understanding of the corona and solar wind, it is essential to have continuous monitoring of the Sun’s global magnetic field distribution, along with equivalent coverage in EUV and white light, as well as in situ monitoring of the solar wind from multiple and widely spaced vantage points.

Attie R. A.   Tremblay B. T.   Kirk M. K.

Toward Photospheric Flow Maps as a Systematic Data Product [#4110]
Calling for a discussion on the mapping of photospheric flows as a systematic data product, which often has equal or superior values than the imagery data from which they originate. We advocate for onboard processing in a situation where the telemetry would not provide enough imagery data for accurate processing of photospheric flow maps and where providing the latter would reveal more valuable than the imagery, for solar physics and space weather research.

Brosius J. W.   Young P. R.   Klimchuk J. A.

The Case for Comprehensive Spectroscopic Measurements of the Sun:  Understanding Solar Flares and Coronal Heating [#4044]
At present, the solar physics community’s efforts are largely focused on answering two of the overarching, unresolved questions in the field:  (1) What heats the solar corona? (2) What causes the sudden, rapid release of energy that produces flares? Comprehensive spectroscopic measurements — those that thoroughly cover the entire range of atmospheric temperature that occurs along any given line of sight — are essential to answer these questions.

Caspi A.   Shih A. Y.   Warren H. P.   Winebarger A. R.   Cheung M. C. M.   DeForest C. E.   Gburek S.   Klimchuk J. A.   Kowaliński M.   Laurent G. T.   Mason J. P.   Mrozek T.   Palo S. E.   Schattenburg M.   Schwartz R. A.   Seaton D. B.   Stęślicki M.   Sylwester J.   Woods T. N.

Understanding Heating of the Solar Corona Through Soft X-Ray Spectroscopy [#4128]
Why the solar corona is orders of magnitude hotter than the underlying atmosphere remains a fundamental unanswered question. Soft X-ray emission provides unique diagnostics of high-energy processes, but spectroscopic observations have been sporadic, with incomplete wavelength coverage. Significant progress on this critical question is easily achievable by 2050 if we leverage emerging technological advances to fill this observational gap and prioritize development of new solar SXR observatories.

Chamberlin P. C.   Woods T. N.

Global Scale Plasma Diagnostics, Radiated Energy, and Bulk Motions of the Sun [#4079]
Great strides are made in Solar Physics by utilizing advanced models in combination with new technology to continually improve spatial, spectral/thermal, and temporal resolutions and ranges in the measurements. Continually driving to more advanced measurements, especially with regards to spatial resolution improvements, one caution over the coming decades is to continue to utilize the non-spatially resolved, “Sun-as-a-Star” solar irradiance measurements for advancing solar physics.

Di Matteo S.   Viall N. M.   Kepko L.   Roberts A.   DeForest C. E.

The Structured and Turbulent Nature of the Solar Wind Between the Injection and the Inertial Range [#4077]
We posed questions about the coexistence of, and mutual feedback between, solar wind turbulence and structures of solar origin. Focusing on the time-scales and length-scales that mark the transition from the injection to the inertial range, we stressed how the advancement of our understanding of the connections between solar variability and the Earth’s environment requires synergy between different research fields with multi-disciplinary approaches.

Gibson S. E.   de Toma G.   Hassler D. M.   DeForest C.   Hoeksema J. T.   Vourlidas A.   Newmark J.   Thompson B. J.   Kirk M.   Viall N.   Wallace S.   LInker J.   Rivera Y.

The Science Case for a 4π Perspective:  A Polar/Global View of the Heliosphere [#4054]
The heliosphere is a network of magnetically connected systems, from Sun, through solar wind, to the planets. Understanding the global heliosphere is central to the field of heliophysics and requires more observations away from the Sun-Earth line. The ultimate goal for 2050 is 4π coverage, and between now and then the priority must be obtaining high-latitude (> 60 degree) views from above the solar poles.

Gibson S. E.   Malanushenko A.   de Toma G.   Tomczyk S.   Reeves K.   Tian H.   Yang Z.   Chen B.   Fleishman G.   Gary D.   Nita G.   Pillet V. M.   White S.   Rachmeler L. A.   Raouafi N. E.   Zhao J.   Bąk-Stęślicka U.   Dalmasse K.   Kucera T.

Untangling the Global Coronal Magnetic Field with Multiwavelength Observations [#4062]
A key goal for 2050 is to make comprehensive, ongoing synoptic maps of the global coronal magnetic field using multiwavelength observations. This will require the construction of new telescopes, both ground and space-based, at all wavelengths. It will also require ongoing development of inversion frameworks capable of incorporating multi-wavelength data, and forward analysis tools and simulation testbeds to prioritize and establish observational requirements on the proposed telescopes.

Hassler D. M.   Gibson S. E.   Hoeksema J. T.   Newmark J.   Vourlidas A.

The Science Case for a Polar Perspective:  Discovery Space [#4076]
Just as our understanding of Jupiter and Saturn are being revolutionized by new observations from Juno and Cassini (revealing turbulent cyclones and motion never before imagined), our understanding of the Sun, the solar dynamo, and how polar magnetic fields and flows shape the solar activity cycle will be revolutionized by observations of the solar poles. Solar polar pathfinders, such as the Solaris Explorer mission, will provide the first glimpse of mysteries likely to drive our science for decades to come.

Hoeksema J. T.   Basu S.   Braun D.   Brown B.   Dikpati M.   Featherstone N.   Gibson S.   Hassler D.   Hindman B.   Komm R.   Newmark J.   Pevtsov A. A.   Upton L.   Vourlidas A.   Zhao J.

The Science Case for a 4π Perspective:  A Polar/Global View for Understanding the Solar Cycle [#4039]
Will we in 2050 look back and wonder at our inability to predict the last three solar cycles? A critical gap in our knowledge of cycle drivers arises because we can only see a fraction of the Sun at a time. In particular, our view of the poles is severely compromised. Long duration, truly global observations of magnetic and velocity fields are needed to better understand interior flows through helioseismology, subtle azimuthal variations, and flux emergence and transport over the course of a cycle.

Ji H.   Karpen J.   Alt A.   Antiochos S.   Baalrud S.   Bale S.   Bellan P. M.   Begelman M.   Beresnyak A.   Bhattacharjee A.   Blackman E. G.   Brennan D.   Brown M.   Buechner J.   Burch J.   Cassak P.   Chen B.   Chen L. -J.   Chen Y.   Chien A.   Comisso L.   Craig D.   Dahlin J.   Daughton W.   DeLuca E.   Dong C. F.   Dorfman S.   Drake J. F.   Ebrahimi F.   Egedal J.   Ergun R.   Eyink G.   Fan Y.   Fiksel G.   Forest C.   Fox W.   Froula D.   Fujimoto K.   Gao L.   Genestreti K.   Gilson S.   Goldstein M.   Guo F.   Hare J.   Hesse M.   Hoshino M.   Hu Q.   Huang Y. -M.   Jara-Almonte J.   Karimabadi H.   Klimchuk J.   Kunz M.   Kusano K.   Lazarian A.   Le A.   Lebedev S.   Li H.   Li X.   Lin Y.   Linton M.   Liu Y. -H.   Liu W.   Longcope D.   Loureiro N.   Lu Q. -M.   Ma Z. -W.   Matthaeus W. H.   Meyerhofer D.   Mozer F.   Munsat T.   Murphy N. A.   Nilson P.   Ono Y.   Opher M.   Park H.   Parker S.   Petropoulou M.   Phan T.   Prager S.   Rempel M.   Ren C.   Ren Y.   Rosner R.   Roytershteyn V.   Sarff J.   Savcheva A.   Schaffner D.   Schoeffier K.   Scime E.   Shay M.   Sironi L.   Sitnov M.   Stanier A.   Swisdak M.   TenBarge J.   Tharp T.   Uzdensky D.   Vaivads A.   Velli M.   Vishiac E.   Wang H.   Werner G.   Xiao C.   Yamada M.   Yokoyama T.   Yoo J.   Zenitani S.   Zweibel E.

Major Scientific Challenges and Opportunities in Understanding Magnetic Reconnection and Related Explosive Phenomena in Solar and Heliospheric Plasmas [#4082]
Magnetic reconnection underlies many explosive phenomena in heliophysical and laboratory plasmas. New capabilities in theory/simulations, observations, and lab experiments provide exciting opportunities to solve the grand scientific challenges in understanding reconnection and predicting space weather events. Success requires enhanced and sustained investments from funding agencies, interagency partnerships, and close collaborations among solar, heliospheric, and laboratory plasma communities.

Jones A. R.   Chamberlin P. C.   Mason J. P.   Schmit D. J.

Understanding the Thermal Structure of the Chromospheric and Coronal Plasmas [#4058]
To fully understand the mechanisms driving the energy balance and evolution in the solar chromosphere and corona will require a sea change in solar instrumentation that can provide the required simultaneously high spatial, temporal, and spectral measurements of the solar atmosphere.

Kerr G. S.   Alaoui M.   Allred J. C.   Bian N. H.   Dennis B. R.   Emslie A. G.   Fletcher L.   Guidoni S.   Hayes L. A.   Holman G. D.   Hudson H. S.   Karpen J. T.   Kowalski A. F.   Milligan R. O.   Polito V.   Qiu J.   Ryan D. F.

Solar Flare Energy Partitioning and Transport — The Impulsive Phase [#4088]
Flares are a fundamental component of geoeffective solar eruptive events (SEEs, together with CMEs). To explain and ultimately predict SEEs, we need a comprehensive understanding of their energy release, conversion, and transport. We discuss the flare impulsive phase part of SEEs. By 2050 we must determine the mechanisms of particle acceleration and propagation, and must push beyond the paradigm of electron beams, to also account for accelerated protons and ions and downward directed Alfven waves.

Kerr G. S.   Alaoui M.   Allred J. C.   Bian N. H.   Dennis B. R.   Emslie A. G.   Fletcher L.   Guidoni S.   Hayes L. A.   Holman G. D.   Hudson H. S.   Karpen J. T.   Kowalski A. F.   Milligan R. O.   Polito V.   Qiu J.   Ryan D. F.

Solar Flare Energy Partitioning and Transport — The Gradual Phase [#4089]
Flares are a fundamental component of geoeffective solar eruptive events (SEEs, together with CMEs). To explain and ultimately predict SEEs we require a comprehensive understanding of their energy release, conversion, and transport. We discuss the flare gradual phase, which persists much longer than predicted. By 2050 we must identify the characteristics of the significant energy deposition sustaining the gradual phase and address the fundamental processes of turbulence and non-local heat flux.

Klimchuk J. A.   Antiochos S. K.   Brosius J. W.   Daldorff L. K. S.   Johnston C. D.   Kucera T. A.   Leake J. E.   Uritsky V. M.   Viall N. M.

Heating of the Magnetically Closed Corona [#4027]
This white paper describes observation, theory, and modeling efforts that should be pursued over the next 10–30 years to finally explain the heating of the magnetically closed solar corona (active regions and quiet Sun), a prerequisite to accurate forecasts of the solar spectral irradiance and its space weather impacts.

Klimchuk J. A.   Daw A. N.   Del Zanna G.

The Case for Spectroscopic Observations of Very Hot (5–10 MK) Plasma [#4028]
This white paper explains why spectroscopic observations of very hot plasma are crucial to understanding the explosive release of magnetic energy that is at the heart of many important solar and astrophysical phenomena, including CMEs, flares, nanoflares, and jets.

Leake J.   Karpen J.   DeVore R.   MacNeice P.   Mays L.   Rastaetter L.   Collado-Vega Y.   Daldorff L.   Tarr L.   Torok T.   Reep J.

Future Predictive Modeling of Solar Eruptive Events [#4111]
This document outlines future requirements to develop predictive models of Solar Eruptive Event initiation. It provides suggestions for targeted programs to meet these requirements by 2050, including both theoretical and modeling development, and observational inputs.

Leamon R. J.   McIntosh S. W.

Heliospheric Meteorology:  HMM, the $200 Mission [#4021]
Rapid advances were made in the study, and forecasting, of terrestrial meteorology half a century ago with the launch of earth observing satellites. We propose a concept — the Heliospheric Meteorology Mission (HMM) — to mirror the weather forecast advances to Space Weather using a distributed network of deep space hardened smallsats that view the entire Sun. HMM really is the $200 mission for heliophysics in (if not by) 2050. As in, “Go to HMM. Go directly, do not pass ‘Go’, do not collect $200.”

Martinez Pillet V.   Gibson S.   Pevtsov A.   de Wijn A. G.   Gosain S.   Burkepile J.   Henney C. J.   McAteer J.   Muglach K.   Bain H. M.   Manchester W.   Lin H.   Roth M.   Ichimoto K.   Suematsu Y.

Helio2050:  Ground-Based Synoptic Studies of the Sun [#4016]
This white paper describes existing and future contextual synoptic observations needed to fully exploit the new knowledge of the underlying microphysics about the magnetic linkages between the Earth and the Sun. This combination of a better understanding of small-scale processes and the appropriate global context enables a physics-based approach to Space Weather comparable to Terrestrial Weather forecasting.

McIntosh S. W.   Leamon R. J.   Newmark J.   Johnson L.   Dikpati M.

Rush the Poles:  What is Going on Around 55° Latitude? [#4091]
Is 55° the seat of the Sun’s dynamo processes — where the magnetic field that shapes and drives the heliosphere originates? Critical spectroscopic access to this region and measurement of the underlying structures and flow patterns requires long-duration, continuous observing periods over the Sun’s poles. This white paper highlights observations that unveil the region around 55° latitude, challenge theory, and presents a scientific target of a magnitude similar to tracing the source of the Nile.

Newmark J.   Hoeksema J. T.   Featherstone N.   Vourlidas A.   McIntosh S.   Gibson S.   Hassler D.   Dikpati M.   Brown B.

Solar Magnetism and Structure from the Poles [#4045]
Progress on understanding generation of the solar magnetic field requires detailed observations of the solar polar regions, where data is currently scarce and where much of the subtle interplay between plasma flows and magnetic fields that gives rise to cyclic polarity reversals is thought to occur. High-latitude observations will provide an unprecedented vantage point for helioseismic imaging that can be used to probe flows and fields from deep in the convection zone to the surface.

Pevtsov A. A.   Gibson S.   Webb D.   Dikpati M.   Burkepile J.   Bertello L.

Long-Term Data Sets — Key to Understanding Past and Future of Solar Activity [#4032]
Learning about Sun’s long-term behavior requires the continuity of long-term synoptic observations. Long-term observing programs and datasets (1) provide reference for the typical or normal states of natural systems such as the sun and heliosphere, (2) provide information about evolutionary (time scales longer than solar cycle) and transient changes in these natural systems, and (3) feed future research to solve issues that may not be identified at the time when the data are acquired.

Pevtsov A. A.   Woods T.   Martinez Pillet V.   Hassler D.   Berger T.   Gosain S.   Hoeksema T.   Jones A.   Kohnert R.

Solar and Heliospheric Magnetism in 5D [#4034]
To understand the Sun and the heliosphere requires taking observations from multiple vantage points. We describe six science objectives:  to understand (1) the interconnected magnetic system in the solar corona; (2) the evolving structures of ICMEs and solar wind streamers; (3) the life cycle of active region; (4) the true 3D orientation of magnetic fields; (5) explore the solar polar magnetic fields and their role on solar dynamo; and (6) Improve prediction of solar wind and CMEs.

Rabin D. M.   Daw A. N.   Denis K. L.   Klimchuk J. A.   Kamalabadi F.   Schmit D. J.

Observing Coronal Microscales [#4078]
Diffractive optics can enable the observation of individual energy-release sites in the solar corona to test theories of coronal heating. We present a progression of science-driven technology advancements leading to the capability to study in detail small-scale structure (<100 km) that figures in almost all contemporary theories of coronal heating. The development path culminates in the ability to employ milliarcsecond imaging spectroscopy for solar and astrophysics missions.

Reardon K.   Cauzzi G.   Rimmele T.   Schad T.   Tarr L.   Tremblay B.   Rast M.

Revealing Fundamental Physics of the Sun with DKIST [#4106]
We advocate for the integrative study of the solar atmosphere, which will enhance our ability forecast its dynamical evolution and inform understanding of the underlying plasma processes. With the system’s complex physics and observables, successful data interpretation requires comparison with model output. Conversely, realistic simulations require observational touchstones. The Daniel K. Inouye Solar Telescope will be essential to these efforts, an integral partner in advancing heliophysics.

Rempel M.   Fan Y.   Dikpati M.   Malanushenko A.   Kazachenko M. D.   Cheung M. C. M.   Chintzoglou G.   Sun X.   Fisher G. H.

Towards Data-Driven Modeling and Real-Time Prediction of Solar Flares and Coronal Mass Ejections [#4085]
Modeling of transient events in the solar atmosphere requires the confluence of 3 critical elements:  (1) model sophistication, (2) data availability, and (3) data assimilation. This white paper describes required advances that will enable statistical flare and CME forecasting (e.g. eruption probability and timing, estimation of strength, and CME details, such as speed and magnetic field orientation) similar to weather prediction on Earth.

Ryan J. M.   de Nolfo G. A.   Mackinnon A.   McConnell M. L.   Murphy R.   Vilmer N.   Young C. A.

High-Energy Neutrons in the Heliosphere [#4086]
We outline the value of performing low background, spectroscopic measurements of fast neutrons to advance the science of solar energetic particles, the inner radiation belt proton budget, and lunar and planetary regolith composition. With the existing rarity of such measurements, breakthroughs are likely in understanding Long Duration Gamma Ray Flares, accelerated solar proton spectra, time resolved proton injection into the inner belts, and average Z measurements of lunar planetary surfaces.

Scherrer P.   Pillet V.   Moore R.   Arge N.   Cheung M.   Gopalwamy N.   Habbal S.   Harvey J.   Hathaway D.   Linker J.   Martens P.   Munoz-Jaramillo A.   Ulrich R.   Wang H.   Wang Y.-M.

On the Need for Full-Disk Solar Magnetographs in Space Around the Sun [#4005]
The white paper stresses the importance and need for full-disk magnetographs in space around the Sun for all of solar science and heliosphere science in the coming decades.

Seaton D. B.   West M. J.   Caspi A.   DeForest C. E.   Golub L.   Mason J.   Savage S.   Viall N.

A Strategy for a Coherent and Comprehensive Basis for Understanding the Middle Corona [#4075]
The middle corona encompasses almost all of the influential physical transitions and processes that govern the behavior of coronal outflow and inflow. Because it is challenging to observe, the middle corona has been largely overlooked by major solar missions going back decades. We discuss the need for strategic planning for continuous, coherent, and comprehensive observations of the middle corona and outline a plan to achieve such observations in the coming decades.

Shih A. Y.   Vilmer N.   MacKinnon A.   Pesce-Rollins M.   Vainio R.   Hudson H.   Simões P. J. A.   Cohen C. M. S.

Ion Acceleration in Solar Eruptive Events [#4023]
Observations of energetic ions in solar eruptive events — solar flares with associated CMEs — are critical to understanding the transient, efficient release of stored magnetic energy at the Sun. Solar flares are the most powerful explosions in the solar system, efficiently accelerating ions up to tens of GeV. CME-driven shocks also accelerate ions to extreme energies in SEP events. Observing ion signatures is necessary to answer open questions regarding ion acceleration and transport.

Shih A. Y.   Glesener L.   Krucker S.   Guidoni S.   Christe S.   Reeves K.   Gburek S.   Caspi A.   Alaoui M.   Allred J.   Battaglia M.   Baumgartner W.   Dennis B.   Drake J.   Goetz K.   Golub L.   Hannah I.   Hayes L.   Holman G.   Inglis A.   Ireland J.   Kerr G.   Klimchuk J.   McKenzie D.   Moore C.   Musset S.   Reep J.   Ryan D.   Saint-Hilaire P.   Savage S.   Schwartz R.   Seaton D.   Stęślicki M.   Woods T.

Fundamentals of Impulsive Energy Release in the Corona [#4093]
Solar eruptive events are the most energetic and geo-effective space-weather drivers. Many of the processes involved in triggering, driving, and sustaining solar eruptive events — including magnetic reconnection, particle acceleration, plasma heating, and energy transport in magnetized plasmas — also play important roles in phenomena throughout the Universe. We discuss areas of science investigation that would significantly advance our understanding of these fundamental physical processes.

Solomon S. C.   Woods T. N.   Eparvier F. G.   Chamberlin P. C.

Solar Spectral Irradiance Objectives for Improved Understanding of Atmospheric Variability [#4080]
Accurate and precise knowledge of solar spectral irradiance and its variability are critical throughout terrestrial and planetary atmospheres. This is particularly true for UV and X-ray fluxes that impact the upper atmosphere and ionosphere, but includes visible and infrared irradiance that dominate total solar irradiance, which is important for climate. A robust ongoing observational and modeling program is needed to understand key spectral regions and how they affect the geospace environment.

Sterling A. C.   Moore R. L.

Future High-Resolution and High-Cadence Observations for Unraveling Eruptive Solar Features [#4118]
Many of the key advances in solar science over the previous fifty years have been strongly influenced by imaging with increasing resolution and cadence of the Sun’s atmosphere from space. There is still much room for further advances in this area in the coming decades. Here we demonstrate this need using as an example recent past advances of the features known as solar coronal jets.

Vourlidas A.   Viall-kepko N.   Laming J. M.   Cranmer S.   Arge N.   DeForest C.   de Toma G.   Caspi A.   Raouafi N.-E.

Exploring the Critical Coronal Transition Region:  The Key to Uncovering the Genesis of the Solar Wind and Solar Eruptions [#4013]
The development of the solar wind and CME occurs within 10 Rs, particularly below 4 Rs. This seemingly narrow spatial region encompasses the transition of coronal plasma processes through the entire range of physical regimes from fluid to kinetic, and from primarily closed magnetic field structures to primarily open. The comprehensive exploration of this Critical Coronal Transition Region will answer two of the most central heliophysics questions with repercussions across NASA and society.

Vourlidas A.   Gibson S.   Hassler D.   Hoeksema T.   Liinton M.   Lugaz N.   Newmark J.

The Science Case for the 4π Perspective:  A Polar/Global View for Studying the Evolution and Propagation of the Solar Wind and Solar Transients [#4019]
To make progress on the open questions on CME/CIR propagation, their interactions and the role and nature of the ambient solar wind, we need spatially resolved coverage of the inner heliosphere — both in-situ and (critically) imaging — at temporal scales matching the evolutionary timescales of these phenomena (tens of minutes to hours), and from multiple vantage points. The polar vantage is uniquely beneficial because of the wide coverage and unique perspective it provides.

Woods T. N.   Caspi A.   Chamberlin P. C.   Gibson S.   Jones A. R.   Mason J. P.   Thiemann E. M. B.

Key Science Objectives for Advancing Flare Forecast Accuracy [#4020]
The keys to unlocking the science of solar storm forecasts are understanding (1) the creation and evolution of the solar magnetic field in complex active regions, (2) how the magnetic field interacts with the solar plasma to release energy and accelerate energetic particles, and (3) the global interactions between active regions and other solar features that can enhance some events or suppress others. This white paper has a narrow focus on the context of these for the full-disk solar irradiance.

Youngblood A.   Cranmer S.   Van Kooten S.   Mason J. P.   Pineda J. S.   France K.   Vorobiev D.   Eparvier F.   Notsu Y.

Solar Analogs as a Tool to Understand the Sun [#4029]
Solar analogs provide a useful laboratory for exploring the range of Sun-like behaviors and the physical mechanisms underlying some of the Sun’s most elusive processes. We argue for a series of heliophysics-motivated, but astrophysics-like studies of solar analogs, which should be considered in the framework of statistical studies of the dependences of various observables like activity, magnetism, and granulation on fundamental stellar parameters like mass, metallicity, and rotation.





White Paper Title and Summary

Chakraborty S.   Bland E. C.   Fiori R. A. D.   Ruohoniemi J. M.   Baker J. B. H.

Observing and Modeling Radio Blackout in the Ionosphere Following Solar Flares [#4109]
Networks of ground-based remote sensing instruments, such as SuperDARN radars, riometers, and ionosondes, continue to be developed to facilitate further progress on the most pressing outstanding questions in space science and enhance the capabilities for monitoring sudden ionospheric disturbances and situational awareness.

Cheung M. C. M.   Kepko L.   Ho G.  C.   Tan F.   Braatz L.   De Pontieu B.   Biesecker D.   Jin M.   Chintzoglou G.

An Autonomous Space Weather Constellation [#4051]
We present the science case, concept of operations, and technological capabilities needed for an Autonomous Space Weather Constellation. It will observe the Sun from multiple vantage points and sample solar-wind conditions from multiple locations. It aims to fill the gaps in our observational capabilities in order to facilitate validated, near-real time, data-driven models of the Sun’s global corona, heliosphere, and associated space weather effects to safeguard human and robotic exploration.

Dikpati M.   Leamon R. J.   Anderson J. L.   Belucz B.   Biesecker D.   Bothun G.   Fan Y.   Gilman P. A.   Guerrero G.   Hoeksema J. T.   Kitiashvili I. N.   Kosovichev A. G.   Linkmann M.   McIntosh S. W.   Norton A. A.   Rempel M.   Tripathy S. C.   Upton L.   Wang H.   Wing S.

Space Weather Modeling and Prediction for Intermediate Time-Scales [#4035]
Originating from solar activity, space weather occurs on short (hours/days), intermediate (weeks/months), and long (years/decades) time-scales. Significant progress has been made in predicting space weather on short and long time-scales, but much less for intermediate times. With recent advances in observing and modeling solar Rossby waves, we see a bright future for simulating MHD Rossby waves, which (combined with data) can lead to operational space weather predictions weeks-to-months ahead.

Dorelli J. C.   Bard C.   Da Silva D.   dos Santos L. F. G.   Ireland J.   Kirk M.   McGranaghan R.   Narock A.   Nieves-Chinchilla T.   Samara M.   Sarantos M.   Schuck P.   Thompson B.

Deep Learning for Space Weather Prediction:  Bridging the Gap Between Heliophysics Data and Theory [#4053]
Traditionally, data analysis and theory have been viewed as separate disciplines, each feeding into fundamentally different types of models. Modern deep learning technology is beginning to unify these two disciplines and will produce a new class of predictively powerful space weather models that combine the physical insights gained by data and theory. We call on NASA to invest in the research and infrastructure necessary for the heliophysics’ community to take advantage of these advances.

Gibson S. E.   de Toma G.   Malanushenko A.   Fan Y.   Hassler D. M.   DeForest C.   Hoeksema J. T.   Vourlidas A.   Newmark J.   Thompson B. J.   Kirk M.   Viall N.   Wallace S.   Dalmasse K.   Berger T.   Rivera Y.

The Science Case for a 4π Perspective:  A Polar/Global View on Space Weather Origins [#4059]
One of the fundamental inputs to space-weather forecasting is information about the origins of coronal mass ejection (CMEs). Ultimately, improving space-weather forecasts requires observations from off the Sun-Earth line (SEL) and in particular, observations from the solar poles which yield a longitudinal “sunny-side-up” view, providing space-weather monitoring for all the planets and spacecraft in the inner heliosphere, not just the Earth-Moon system and L1.

Green J. L.   Dong C.   Hesse M.   Young C. A.

Space Weather Observations and Modeling in Support of Human Exploration of Mars [#4010]
Space Weather (SW) observations and modeling at Mars have begun, but it must be significantly increased in order to support the future of human exploration. A comprehensive SW understanding of a planet without a global magnetosphere but thin atmosphere is very different than our situation at Earth so there is substantial fundamental research remaining. The next heliophysics decadal must include a new initiative in order to meet expected demands for SW information at Mars.

Holler B. J.   Benecchi S. D.   Britt D.   Cartwright R.   Gladstone R.   Kollmann P.   Lisse C. M.   Pinilla-Alonso N.   Quirico E.   Runyon K. D.   Scipioni F.   Stryk T.

Probing the Endo- and Exo-Heliospheric Environments with Trans-Neptunian Objects (TNOs) [#4081]
Trans-Neptunian objects (TNOs) orbit beyond Neptune and represent a diverse population of solar system worlds, both dynamically and compositionally. Two dynamical classes that are of particular interest to the study of space weathering environments inside and outside the solar heliosphere are the cold classical Kuiper Belt objects (CCKBOs) that are believed to have formed in situ and the extreme TNOs (ETNOs) that spend a significant fraction of their orbits outside the current heliospheric boundary.

Mannucci A. J.


Space Weather Prediction and Forecasting in 2050 [#4096]
This white paper is based on the recommendations document that was developed following the Chapman Conference on Scientific Challenges Pertaining to Space Weather Forecasting Including Extremes, which was held on February 11–15, 2019 in Pasadena, California, USA. We describe our vision for space weather research in 2050.

Mason J. P.   Chamberlin P. C.   Woods T. N.   Jones A.   Kirk M.   Veronig A. M.   Dissauer K.   SunCET Team

CME Acceleration as a Probe of the Coronal Magnetic Field [#4018]
By 2050, we expect that CME models will accurately describe, and ideally predict, observed solar eruptions and the propagation of the CMEs through the corona. We describe some of the present known unknowns in observations and models that would need to be addressed in order to reach this goal. We also describe how we might prepare for some of the unknown unknowns that will surely become challenges.

McGranaghan R. M.   Thompson B.   Camporeale E.   Bortnik J.   Bobra M.   Lapenta G.   Wing S.   Poduval B.   Lotz S.   Murray S.   Kirk M.   Bain H. M.   Riley P.   Tremblay B.   Cheung M.   Delouille V.

Heliophysics Discovery Tools for the 21st Century:  Data Science and Machine Learning Structures and Recommendations for 2020–2050 [#4052]
Three main points:  1. Data Science (DS) will be increasingly important to heliophysics; 2. Methods of heliophysics science discovery will continually evolve, requiring the use of learning technologies [e.g., machine learning (ML)] that are applied rigorously and that are capable of supporting discovery; and 3. To grow with the pace of data, technology, and workforce changes, heliophysics requires a new approach to the representation of knowledge.

Nykyri K.   Ma X.

Improved Plasma Science Through Multi-Point, Multi-Scale Measurements in the Solar Wind [#4008]
The ultimate goal of the proposed, future, multi-point, cross-scale measurements at the orbits and Lagrange 1, 3, 4, and 5 points of Mercury, Venus, and Earth are 1) to improve our understanding of the basic plasma physics in the solar wind; 2) to reveal the evolution of solar wind in the interplanetary region; and 3) to monitor the upstream solar wind conditions for downstream space missions.

Ukhorskiy A.   Turner D.   Sotirelis T.   Erlandson R.   Likar J.   Vourlidas A.   Lanzerotti L.   Millan R.   Spence H.   Kletzing C.

Radiation Belt Space Weather at NASA:  From Basic Research to Operations [#4092]
Ambient and increased levels of relativistic electrons and highly penetrating ion radiation can cause substantial economic impact by damaging and destroying orbiting spacecraft and are hazardous for astronauts in space. Protecting the nation’s infrastructure from adverse particle radiation effects requires a community-wide systems solution employing a large-spacecraft constellation, capable ground-based operations, and comprehensive data-driven modeling infrastructure.

Vourlidas A.   Merkin S.   Turner D.   Nikoukar R.   Paxton L.   Ukhorskiy A.   Sotirelis T.   Zhang Y.

Solving the Space Weather Problem:  A 15+ Year Roadmap to Revolutionize Space Weather Research, Protect NASA Space Assets, and Enable Robust Operations [#4014]
We propose a ‘system-of-systems’ — an integrated web of SpWx stations and state-of-the-art modeling facilities to enable a transformative advance in Space Weather nowcasting and forecasting. The Space Weather Aggregated Network of Systems (SWANS) will enable space situational awareness for end-users invested in spaceflight operations, infrastructure risk mitigation, and future human endeavors in space exploration while profoundly transforming heliophysics research by 2050 or earlier.





White Paper Title and Summary

Burkepile J. T.   St.Cyr O. C.   Kahler S. W.   Posner A.   Richardson I. G.   Ling A. G.   Thompson W. T.   Thompson B. J.   Galloy M. D.   de Toma G.   de Wijn A. G.   Gibson S. E.   Vourlidas A.   Laurenza M.   Gilbert H. R.   Bain H. M.   Martinez Pillet V.   Parker L. N.   Cremades H.   Balmaceda L. A.

Helio2050:  Observations for Improving SEP Forecasts and Warnings [#4037]
Solar Energetic Particles are a key cause of space weather impacts and are a top forecasting priority. It has been demonstrated that near-real-time measurements of CME acceleration in the low corona, 0.04 to 0.5 nm X-rays, low frequency radio emissions, and relativistic electron intensities are valuable SEP forecasting tools that should be incorporated into SEP warning systems. These observations will help shed light on the fundamental physical processes of SEP acceleration and transport.

Hurlburt N. E.   Berger T. E.

Architectures for Space Weather Magnetographs [#4121]
A key driver for future space weather observations is the optimal architecture for photospheric field measurements. In particular, should they be acquired from ground-based or space-based instruments, or both? Here we argue that space-based instruments are the best solution, not only due to the well-established fact of their superior data quality, but also to the lesser understood role they play in providing a more cost effective, more flexible and more operationally efficient solution.





White Paper Title and Summary

Barnes W. T.   Juno J.   Reep J. W.   Ireland J.   Wright P. J.   Spitzer S. A.   Alterman B. L.   Stansby D.   Lichko E.   Bobra M. G.   Dahlin J.   Higginson A.   Kirk M. S. F.   Reardon K.   Rivera Y. J.   Sadykov V.   Schonfeld S.   Smith A.   Verniero J. L.   Wallace S.   Weberg M.   Whittlesey P.

Toward a Sustainable Software Development Model for Heliophysics [#4046]
In this white paper, we provide a vision for the development of research software for heliophysics. By 2050, we envision that software development will be actively recognized and rewarded with career stability, that research software will be openly developed and adhere to a set of community-established standards, and that there will be a sustainable and interoperable software ecosystem for heliophysics research. We identify a number of short- and long-term goals that support this vision.

Johnson L.   Barnes N.   Ceriotti M.   Davoyan A.   Friedman L.   Garber D.   Kezerashvili R.   Kobayashi K.   Matloff G.   McInnes C.   Mulligan P.   Swartzlander G.   Turyshev S. G.

Solar Sail Propulsion by 2050:  An Enabling Capability for Heliophysics Missions [#4009]
Solar sails enable missions to observe the solar environment from unique vantage points, such as sustained observations away from the Sun-Earth line; sub-L1 station keeping; high inclination solar orbits; Earth polar-sitting and polar-viewing observatories; fast transit missions to study heliosphere to interstellar medium transition, as well as missions of interest across a broad user community. Recent and planned demonstration missions make this technology ready for use on near-term science missions.

Schonfeld S. J.   Pesnell W. D.   Verniero J. L.   Rivera Y. J.   Halford A. J.   Vines S. K.   Spitzer S. A.

Communications Enabling Science from the 2050 Heliophysics System Observatory [#4119]
This paper outlines the current state of satellite communications resources and highlights the negative impact on scientific progress caused by the necessity of working within a bandwidth-limited data transfer environment. The paper recommends strong advocacy from the solar and heliospheric communities for maintaining and improving existing satellite communications infrastructure and advocates for the community to embrace and promote future communication technologies.

Vandegriff J. D.   Smith E. B.   Yeakel K. L.   Candey R. M.   Vines S. K.   Ho G. C.   Clark G. B.

Developing Smarter Techniques to Deal with the Heliophysics Science Data Flood [#4084]
When envisioning heliophysics science out to 2050, increasingly capable instruments will generate very large data volumes, but will still face two stubborn bottlenecks:  telemetry bandwidth (bits per second) and human attention (thoughts per bit). Smarter techniques for on-board decision making and ground-based analysis need to be matured along with the new instrumentation, otherwise the benefits of having more data will not be realized.