Constraints on the Geodynamical Evolution of Venus from Argon Degassing and the Cratering Record

Joseph G. O’Rourke1 and Jun Korenaga2

1California Institute of Technology, Pasadena, CA
2Yale University, New Haven, CT
Two Related Questions

1. Has the surface of Venus suffered one or more episodes of rapid, global resurfacing?
 – Impact craters: O’Rourke et al., GRL, 2014

2. Were mantle dynamics dramatically different than stagnant-lid convection in the past?
 – Thermal evolution: O’Rourke & Korenaga, in revision
Types of Impact Craters

• Only \(~10^3\) craters seen today
 – Distribution governed by atmospheric screening, impactor populations, resurfacing events
 – Latitudes and longitudes are consistent with randomness

• Only \(~10\%\) are obviously embayed by external flows
 – Schaber et al. (JGR, 1992) suggested catastrophic resurfacing at \(~0.5\) Ga, followed by limited volcanism
Equilibrium Resurfacing Model

- Localized resurfacing events can produce random crater distributions
- Strom et al. (JGR, 1994) rejected this model for producing too many embayed craters
- Bjonnes et al. (Icarus, 2012) recognized that this model can be easily tuned
Mystery of Dark-Floored Craters

- ~80% have radar-dark floors in Magellan imagery
- Post-impact volcanic modification?
 - Incomplete halos and ejecta (Herrick & Rumpf, JGR, 2011)

\[d_{bf} = 484 \text{ m} \left(\frac{D}{1 \text{ km}} \right)^{0.165} \]

\[d_{df} = 424 \text{ m} \left(\frac{D}{1 \text{ km}} \right)^{0.108} \]

- Shallow rim-floor depths and low rim heights

D ~ 30 km
Modeling Cratering and Resurfacing

• Both Poisson processes occur everywhere on the surface with equal probability with time constants ~ 1 event/Gyr (exponential distribution)

• Test models using Monte Carlo simulations

• Localized resurfacing by thin, low viscosity flows

• Statistical analysis of results using nth-nearest neighbor statistics ($n = 1, 3, 6$)
Results: Impact Craters

A. Crater Topography

\[
\log_{10}(D \text{ [km]})
\]

- d_{bf} = 484 m (D / 1 km)
- d_{df} = 424 m (D / 1 km)

B. Size Distributions

- Obviously embayed, dark-floored (80)
- Obviously embayed, bright-floored (6)
- Not embayed, dark-floored (668)
- Not embayed, bright-floored (179)
Results: Impact Craters

Dark-floored
- Random? YES
- Model? YES!

Bright-floored
- Random? YES
- Model? YES!

Embayed
- Random? NO!
- Model? NO!!!
Simulating Thermal Evolution

1D parameterized model previously applied to Mars and “super-Venus” planets (e.g., O’Rourke & Korenaga, 2012)

Incorporates volatile transport (H_2O, K, ^{40}Ar) and mantle plumes

Diagram:
- Core (Liquid?)
- Mantle (Convecting)
- Thermal lithosphere
- Includes volatile transport (H_2O, K, ^{40}Ar) and mantle plumes
- Crust
- Depleted mantle lithosphere
- Mantle lithosphere
Argon Degassing from Venus

- 3.3 ± 1.1 ppb of Venus is atmospheric ^{40}Ar
- Four landers measured abundances of K, U, and Th
- Fundamental assumptions:
 - All ^{40}Ar in processed mantle degasses instantly
 - All ^{40}Ar produced by decay of crustal ^{40}K degasses in 1 Myr
 - No atmospheric loss of ^{40}Ar
Results: Thermal Evolution

- T_{cm}
- T_u
- T_c

- Heat Flow (mW m$^{-2}$)
- F_{cm}
- F_m
- F_s

- Thickness (km)
- h_{ML}
- h_{DML}
- h_c

- $\log_{10} [M_{atm, \, ^{40}Ar}]$ (kg)

- $[U]_{PM} = 17$ ppb
- $K/U = 7,220$

- $\sim 45\%$ of volatiles retained in interior

- Fraction Resurfaced
- >0.1 km
- >1 km

- 50% Extrusive
Results: Thermal Evolution

- Less crustal production than Armann & Tackley (JGR, 2012)
 - No “end-member assumption” that all magma immediately erupts
 - Consider lower values of $[U]_{PM}$
 - Relax assumptions of perfect degassing to permit recycling?
- Core is cooling, producing plumes but no dynamo
 - No contradiction because cooling is by conduction, not convection
 - Lots of ways to kill a dynamo…
Conclusions

• Two types of non-catastrophic volcanism produce the observed cratering record
 – Thin, morphologically similar flows can explain the number and distribution of dark-floored craters

• Thermal evolution simulations featuring evolution in the stagnant-lid regime satisfy many constraints
 – Atmospheric abundance of radiogenic 40Ar
 – Crustal and lithospheric thicknesses
 – No global magnetic field at present
 – Plumes upwelling from the CMB?
 – Crustal abundance of potassium