Multi-messenger light curves from gamma-ray bursts

1409.2874, 1606.02325

Mauricio Bustamante

Center for Cosmology and AstroParticle Physics (CCAPP)
The Ohio State University

8th Huntsville Gamma-Ray Burst Symposium
Huntstville — October 24, 2016
Why are GRBs natural ν source candidates?

1. They are bright
 - $10^{52} - 10^{53}$ erg in gamma rays (Sun: 10^{40} erg in 1 yr; SN: 10^{42} erg)
 - Photons up to ~ 100 GeV

 Implies possible acceleration of protons to high energies

2. They have fast time-variability
 - Features at 0.01 s scale
 - Compact emission regions

 Implies high proton and photon number densities ($p\gamma \rightarrow \nu$)

Natural expectation:
GRBs produce copious high-energy neutrinos

(But they are far and relatively rare)
IceCube has not found neutrinos associated to GRBs

- 3 yr of showers (all flavors) + 4 yr of upgoing tracks with > 1 TeV
- Catalog of 807 bursts
- 6 coincident events (5 showers + 1 track) — not statistically significant

$\lesssim 1\%$ of the diffuse flux can be from prompt GRB emission

The elephant in the room

Why is it still interesting to look for GRB neutrinos?

1. **Best candidates for joint high-energy e.m.–neutrino emission**

2. **Potential sources of ultra-high-energy cosmic rays**

Also . . .

3. “Choked” bursts might contribute sizeably to the diffuse flux

 e.g., [P. Mészáros, E. Waxman 2001] [N. Senno, K. Murase, P. Mészáros 2016] [I. Tamborra, S. Ando 2016]

4. **Neutrinos from GRB afterglows expected at \(\sim \) EeV**

 e.g., [K. Murase 2007] [S. Razzque, L. Yang 2015]

So, every bit of insight into how GRBs make neutrinos is essential
GRBs – a zoo of light curves

Photon rate \(\left(10^2 \text{ counts s}^{-1} \right) \)

BATSE variability timescale (width of pulses) \(\equiv t_v \approx 0.01 \text{ s} \)

Mauricio Bustamante (CCAPP OSU) Multi-messenger GRB light curves
Which GRB is brighter in neutrinos?

Just from looking at these gamma-ray light curves,

![GRB920513](image1)

GRB920513
Trigger 1606

![GRB931008](image2)

GRB931008
Trigger 2571

Can we tell which GRB is likely bright in neutrinos?
Which GRB is brighter in neutrinos?

Just from looking at these gamma-ray light curves,

- GRB920513
 - Trigger 1606
 - Fast time variability

- GRB931008
 - Trigger 2571
 - Slow pulse + fast variability

Can we tell which GRB is likely bright in neutrinos?
Which GRB is brighter in neutrinos?

Just from looking at these gamma-ray light curves,

\begin{align*}
\text{GRB920513} & \quad \text{Trigger 1606} \\
\text{GRB931008} & \quad \text{Trigger 2571}
\end{align*}

\begin{align*}
\text{Photon rate}[10^3 \text{ counts s}^{-1}] & \\
\text{Time since trigger [s]} & \\
0 & \quad 20 & \quad 40 & \quad 60 & \quad 80 & \quad 100
\end{align*}

Fast time variability \quad Slow pulse + fast variability

can we tell which GRB is likely bright in neutrinos?

(Answer: yes, the one on the left)
The fireball model — internal collisions

1. Plasma shells propagate at different speeds
2. Two shells collide
3. The shells merge and particles are emitted

Mészáros, Reese, Goodman, Pachinsky, et al.

\[p\gamma \rightarrow \Delta^+(1232) \rightarrow \begin{cases} n\pi^+ \\ p\pi^0 \end{cases} \]
\[\pi^+ \rightarrow \mu^+\nu_\mu \rightarrow \bar{\nu}_\mu e^+\nu_e\nu_\mu \]
\[\pi^0 \rightarrow \gamma\gamma \]
\[n \text{ (escapes)} \rightarrow pe^-\bar{\nu}_e \]

+ More \(\nu \) production modes
(\text{NeuCosmA, \textsc{Hummer}+ PRL 2012})

For each GRB,

\[\text{energy in neutrinos} \propto \text{energy in gamma rays} \]
UHECR emission in a collision

UHECRs escape as

- **Protons** that leak out (not producing ν’s)
- **Neutrons**, which decay into protons outside the source; or

\[\tau_n < 1 \] optically thin to n escape

p's trapped in bulk by magnetic field

p's can leak from borders

\[\tau_n \geq 1 \] optically thick to n escape

p's trapped in bulk by $p\gamma$ and $n\gamma$ interactions

p, n's can leak from borders

See also: H. He et al., *ApJ* 752, 29 (2012)

Multiple individual collisions

An evolving fireball:

- \(\sim 1000 \) expanding shells
- Different individual speeds
- Random initial speeds \((\Gamma)\) follow a distribution
- Many collision radii \((R_C)\)
- Falling \(\gamma, p\) densities

\[
\begin{align*}
\text{fraction of energy output} \\
\text{photosphere} \\
\text{neutrinos} \\
\text{UHECRs} \\
\text{\(\gamma\)-rays} \\
\text{direct escape} \\
\text{n escape}
\end{align*}
\]

\[
\log_{10}(R_C/\text{km})
\]

Synthetic light curves

Each collision emits a particle pulse – their superposition yields a synthetic light curve:

\[
\text{Log}_10 \left(\frac{F}{\text{GeV cm}^{-2} \text{s}^{-1}} \right)
\]

Gamma rays

Neutrinos (all flavors)

\[t_{\text{obs}} \text{ [s]} \]

\[t_{\text{obs}} \text{ [s]} \]

\[\approx 59 \text{ s} \]

\[E_{\text{iso}}^{\gamma, \text{tot}} = 10^{53} \text{ erg} \]

1000 initial shells \(\rightarrow \) 990 collisions

MB, P. Baerwald, K. Murase, W. Winter

Nature Commun. 6, 6783 (2015)
Synthetic light curves

Each collision emits a particle pulse – their superposition yields a **synthetic light curve**:

Energy in gamma-rays: \(E_{\gamma,\text{tot}}^{\text{iso}} = 10^{53} \text{ erg} \)

![Graph showing synthetic light curves for Gamma rays and Neutrinos](image)

\(t_{\text{obs}} \text{ [s]} \)

\(T_{90} \approx 59 \text{ s} \)

1000 initial shells \(\rightarrow \) 990 collisions

MB, P. BAERWALD, K. MURASE, W. WINTER
Nature Commun. 6, 6783 (2015)
Quasi-diffuse neutrino flux

Assuming 667 identical GRBs per year:

\[
\Gamma_0 = 500, \langle \Gamma \rangle = 369
\]

MB, P. BAERWALD, K. MURASE, W. WINTER
Nature Commun. 6, 6783 (2015)
Which GRB is brighter in neutrinos?

Back to our initial question:

Just from looking at these gamma-ray light curves,

can we tell which GRB is likely bright in neutrinos?

- **Fast time variability** (GRB920513)
- **Slow pulse + fast variability** (GRB931008)
What makes a GRB bright in neutrinos?

Undisciplined GRB engine
- Broad Γ distribution
- *E.g.*, engine emits shells with log-normal Γ distrib.

Disciplined GRB engine
- Narrow Γ distribution
- *E.g.*, engine emits shells with oscillating Γ
Light curves

Undisciplined GRB engine
- Fast variability dominates
- No broad pulses

Disciplined GRB engine
- Broad pulses dominate
- Fast variability on top

Gamma rays

Neutrinos (all flavors)

GRB 1

GRB 5

MB, MURASE, WINTER, 1606.02325
How many optically thick collisions?

Undisciplined GRB engine
- Shells have very different speeds
- Collide quickly, close to center
- High ρ and γ densities
- ~ 10 collisions near photosphere are optically thick

Disciplined GRB engine
- Shells have similar speeds
- Collide far from center
- Low ρ and γ densities
- All (superphotospheric) collisions are optically thin
So which burst is neutrino-bright?

Undisciplined GRB engine
\[\sim 10^{-11} \text{ GeV cm}^{-1} \text{ s}^{-1} \text{ sr}^{-1} \]

Disciplined GRB engine
\[\sim 5 \cdot 10^{-13} \text{ GeV cm}^{-1} \text{ s}^{-1} \text{ sr}^{-1} \]

MB, Murase, Winter, 1606.02325
So which burst is neutrino-bright?

Undisciplined GRB engine

\[\sim 10^{-11} \text{ GeV cm}^{-1} \text{ s}^{-1} \text{ sr}^{-1} \]

Disciplined GRB engine

\[\sim 5 \cdot 10^{-13} \text{ GeV cm}^{-1} \text{ s}^{-1} \text{ sr}^{-1} \]

MB, Murase, Winter, 1606.02325
So which burst is neutrino-bright?

Undisciplined GRB engine

\[\sim 10^{-11} \text{ GeV cm}^{-1} \text{ s}^{-1} \text{ sr}^{-1} \]

Disciplined GRB engine

\[\sim 5 \cdot 10^{-13} \text{ GeV cm}^{-1} \text{ s}^{-1} \text{ sr}^{-1} \]

\[E^2 J_{\nu,\mu} \quad [\text{GeV cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}] \]

\[E \quad [\text{GeV}] \]

\[\vdots \quad \text{An undisciplined engine makes a GRB neutrino-bright} \]

MB, Murase, Winter, 1606.02325
Using our new insight

MB, Murase, Winter, 1606.02325

Multi-messenger GRB light curves

Using our new insight
Using our new insight

MB, Murase, Winter, 1606.02325
Using our new insight

MB, Murase, Winter, 1606.02325
Using our new insight

MB, Murase, Winter, 1606.02325

Multi-messenger GRB light curves

[Graphs showing the energy distribution of gamma rays and neutrinos for different GRBs, labeled 'Good ν emitter' or 'Poor ν emitter'.]
Neutrino-weak bursts show time delays in different energy bands —

\[t_{\text{obs}} \text{ [s]} \]

\begin{align*}
10^{-6} – 10^{-2} \text{ GeV} & \quad \text{Fermi–GBM} \quad \text{GRB 5} \\
10^{-1} – 10^{2} \text{ GeV} & \quad \text{Fermi–LAT} \\
10^{2} – 10^{6} \text{ GeV} & \quad \text{CTA}
\end{align*}

MB, Murase, Winter, 1606.02325
See also: Bošnjak, Daigne, A&A 568, A45 (2014) [1404.4577]
Time delays in gamma-ray light curves

Neutrino-weak bursts show time delays in different energy bands —

![Graph showing time delays in gamma-ray light curves for different energy bands.](image)

MB, Murase, Winter, 1606.02325
See also: Bošnjak, Daigne, A&A 568, A45 (2014) [1404.4577]
The future

- GRBs could be the first resolved high-energy neutrino sources
- We have a new criterion to select promising GRBs
- We will add more emission models to our technique
- We need next-gen neutrino telescopes (IceCube-Gen2, KM3NeT)

Next step: ready our technique for application to data
Backup slides
What are the ingredients?

To calculate the ν flux from a GRB, we need:

- Its gamma-ray luminosity L_{γ}^{iso} [erg s$^{-1}$] [measured]
- Its variability timescale t_v [s], from the light curve [measured]
- Break energy of its photon spectrum $\epsilon_{\gamma,\text{break}}$ [MeV] [measured]
- Its redshift z [(sometimes) measured]
- The bulk Lorentz factor of its jet Γ [estimated]
- The energy in electrons, magnetic field, protons [estimated]

Now let us cook up the neutrinos
Normalizing neutrinos with observed gamma rays

For each GRB,

\[\text{energy in neutrinos} \propto \text{energy in gamma rays} \]

\[\int_{0}^{\infty} dE_{\nu} E_{\nu} F_{\nu}(E_{\nu}) = \frac{1}{8} \left[1 - (1 - \langle x_{p\rightarrow\pi} \rangle)^{\Delta R/\lambda_{p\gamma}} \right] \frac{1}{f_{e}} \int_{1 \text{ keV}}^{10 \text{ MeV}} d\epsilon_{\gamma} \epsilon_{\gamma} F_{\gamma}(\epsilon_{\gamma}) \]

\(\Delta R \): size of the emitting region
\(\lambda_{p\gamma} \): mean free path for \(p\gamma \) interactions
\(\langle x_{p\rightarrow\pi} \rangle \): avg. fraction of \(p \) energy transferred to a \(\pi \) in one interaction
\(f_{e}^{-1} \): ratio of energy in protons to energy in photons (“baryonic loading”)

Optical depth to \(p\gamma \) :
\[\frac{\Delta R}{\lambda_{p\gamma}} = \left(\frac{L_{\gamma}^{\text{iso}}}{10^{52} \text{ erg s}^{-1}} \right) \left(\frac{0.01}{t_{v}} \right) \left(\frac{10^{2.5}}{\Gamma} \right)^{4} \left(\frac{\text{MeV}}{\epsilon_{\gamma,\text{break}}} \right) \]
Cooking up the neutrinos

Observed gamma-ray fluence [GeV$^{-1}$ cm$^{-2}$]

\[
F_\gamma (\varepsilon_\gamma) \propto \begin{cases}
(\varepsilon_\gamma / \varepsilon_{\gamma, br})^{-1} & , \varepsilon_\gamma < \varepsilon_{\gamma, br} = 1 \text{ MeV} \\
(\varepsilon_\gamma / \varepsilon_{\gamma, br})^{-2.2} & , \varepsilon_\gamma \geq \varepsilon_{\gamma, br}
\end{cases}
\]

\[E_{\nu, br}: \text{from photon spectrum} \quad + \quad E_{\nu, \mu}: \text{from } \mu \text{ synchrotron cooling}\]

Assumed proton spectrum in the source

\[N'_p(E_p) \propto E_p'^{-2}\]

Neutrinos from } p\gamma, \text{ via } \Delta \text{ resonance}

\[
F_{\nu}(E_\nu) \propto \begin{cases}
\left(\frac{E_\nu}{E_{\nu, br}} \right)^{-\alpha_\nu} & , E_{\nu} < E_{\nu, br} \\
\left(\frac{E_\nu}{E_{\nu, br}} \right)^{-\beta_\nu} & , E_{\nu, br} \leq E_{\nu} < E_{\nu, \mu} \\
\left(\frac{E_\nu}{E_{\nu, br}} \right)^{-\beta_\nu} \left(\frac{E_\nu}{E_{\nu, \mu}} \right)^{-2} & , E_{\nu} \geq E_{\nu, \mu}
\end{cases}
\]

\[E_{\nu, br} \text{: from photon spectrum} \quad E_{\nu, \mu} \text{: from } \mu \text{ synchrotron cooling} \]

Refining the neutrino spectrum — NeuCosmA

More production channels, more complete particle-physics treatment

For example, GRB080603A:

1. Correction to analytical model (IC-FC \rightarrow RFC)

2. Change due to full numerical calculation

Neutrino spectra (at Earth)

Electron neutrino spectrum

Muon neutrino spectrum

Mauricio Bustamante (CCAPP OSU)
Multi-messenger GRB light curves
Diffuse fluxes at Earth

Neutron model vs. two-component model: prompt and cosmogenic ν’s

UHECRs

Neutrinos

$E^3 J_{CR}[\text{GeV}^2 \text{cm}^{-2} \text{s}^{-1} \text{sr}^{-1}]$

$\alpha_p = 2.0$

$E/J_{CR}[\text{GeV}^2 \text{cm}^{-2} \text{s}^{-1} \text{sr}^{-1}]$

$\alpha_p = 2.0$

$E^2 J_{\nu}[\text{GeV} \text{cm}^{-2} \text{s}^{-1} \text{sr}^{-1}]$

$E [\text{GeV}]$

$E [\text{GeV}]$

χ^2/d.o.f. = 3.31

CR (neutron dominated (#1)) $f_e^{-1} \approx 41$

χ^2/d.o.f. = 5.95

CR (leakage dominated (#2)) $f_e^{-1} \approx 62$

NeuCosmA 2014

IC (2010–12) diffuse UHE ν_μ flavor limit

IC40+59 stacking GRB limit

Mauricio Bustamante (CCAPP OSU) Multi-messenger GRB light curves
A simplifying assumption: identical collisions

All internal collisions are identical and occur at the same radius —

\[l' = \Gamma c t_v (1+z) \sim 9 \times 10^4 (1+z) \text{ km} \]

\[R_C = 2c\Gamma^2 t_v / (1+z) \sim 5 \times 10^7 / (1+z) \text{ km} \]

\[N_{\text{coll}} \approx T_{90} / t_v \sim 100-1000 \text{ identical collisions} \]

- Calculate particle emission spectra once
- Then multiply by \(N_{\text{coll}} \)
- \(\Gamma \) is the average speed of shells

Typical values:
\(\Gamma = 300 \)
\(T_{90} = 10 \text{ s} \)
\(t_v = 10^{-3} \text{ s} \)
Initial distribution of shell speeds

Distribution of initial shell speeds (Lorentz factors):

\[
\ln \left(\frac{\Gamma_{k,0} - 1}{\Gamma_0 - 1} \right) = A_{\Gamma} \cdot x
\]

\(x\) follows a Gaussian distribution, \(P(x) \, dx = dx \, e^{-x^2/2}/\sqrt{2\pi}\)

- \(A_{\Gamma} < 1\): Speeds too similar, collisions only at large radii
- \(A_{\Gamma} \gg 1\): Spread too large, too many collisions at low radii
- \(A_{\Gamma} \approx 1\): Just right, burst has high efficiency of conversion of kinetic to radiated energy
Anatomy of an internal collision

1 Propagation

- Fast shell
 - m_f
 - l_f
 - Γ_f
- Slow shell
 - m_s
 - l_s
 - Γ_s

2 Collision

- Reverse shock
- Forward shock

3 Radiation

- Merged shell
- $m_m \approx m_f + m_s$
- $l_m < l_f, l_s$
- $\Gamma_m \approx \sqrt{\Gamma_f \Gamma_s}$

Part of the initial kinetic energy radiated as γ’s, ν’s, p’s, and n’s:

$$E_{\text{coll}}^{\text{iso}} = \left(E_{\text{kin},f}^{\text{iso}} - E_{\text{kin},m}^{\text{iso}} \right) + \left(E_{\text{kin},m}^{\text{iso}} - E_{\text{kin},s}^{\text{iso}} \right)$$

- $1/12 \epsilon_e E_{\text{coll}}^{\text{iso}}$
 - Energy in photons
- $1/12 \epsilon_B E_{\text{coll}}^{\text{iso}}$
 - Energy in magnetic fields
- $5/6 \epsilon_p E_{\text{coll}}^{\text{iso}}$
 - Energy in baryons
Tracking each collision individually

Each collision occurs in a different emission regime –

Sub-photospheric: \(\tau_{e-\gamma} > 1 \)

\[\nu_\mu + \bar{\nu}_\mu \text{ fluence} \]

neutrinos

maximum \(p \) energy

cosmic rays

Limited by \(\gamma + \gamma \rightarrow e^+ + e^- \)

maximum \(\gamma \) energy

gamma–rays

\(E^2E_\mu \text{ GeV cm}^{-2} \)

\(E_{p,\text{max}} \text{ GeV} \)

\(E_{\gamma,\text{max}} \text{ GeV} \)

(observer’s frame)

(source frame)

NeuCosmA: (revised) GRB particle emission – I

Two ingredients:

\[N'_p \left(E'_p \right) \] \hspace{1cm} \text{proton density at the source [GeV}^{-1} \text{ cm}^{-3}] \]

\[N'_\gamma \left(E'_\gamma \right) \] \hspace{1cm} \text{photon density at the source} \]

\[\quad \quad = \quad \quad Q'_\nu \left(E'_\nu \right) \] \hspace{1cm} \text{emitted neutrino spectrum [GeV}^{-1} \text{ cm}^{-3} \text{ s}^{-1}] \]

▶ Photons (same shape as observed at Earth):

\[N'_\gamma \left(E'_\gamma \right) = \begin{cases}
\left(E'_\gamma / E'_{\gamma, \text{break}} \right)^{-1}, & E'_\gamma, \text{min} = 0.2 \text{ eV} \leq E'_\gamma < E'_\gamma, \text{break} = 1 \text{ keV} \\
\left(E'_\gamma / E'_{\gamma, \text{break}} \right)^{-2.2}, & E'_\gamma \geq E'_\gamma, \text{break} \\
0, & \text{otherwise}
\end{cases} \]

▶ Protons: \[N'_p \left(E'_p \right) \propto E'_p^{-\alpha_p} e^{-E'_p/E'_{p, \text{max}}} \] \hspace{1cm} (\alpha_p \gtrsim 2)
NeuCosmA: (revised) GRB particle emission – I

Two ingredients:

\[
\begin{align*}
N'_p (E'_p) & \quad \text{proton density at the source [GeV}^{-1} \text{ cm}^{-3}] \\
N'_\gamma (E'_\gamma) & \quad \text{photon density at the source} \\
\end{align*}
\]

\[
\begin{align*}
\text{=} & \quad Q'_\nu (E'_\nu) \\
& \quad \text{emitted neutrino spectrum [GeV}^{-1} \text{ cm}^{-3} \text{ s}^{-1}] \\
\end{align*}
\]

▶ Photons (same shape as observed at Earth):

\[
N'_\gamma (E'_\gamma) = \begin{cases}
(\frac{E'_\gamma}{E'_{\gamma,\text{break}}} - 1)^{-1} & , \quad E'_\gamma,\text{min} = 0.2 \text{ eV} \leq E'_\gamma < E'_\gamma,\text{break} = 1 \text{ keV} \\
(\frac{E'_\gamma}{E'_{\gamma,\text{break}}} - 2.2) & , \quad E'_\gamma \geq E'_\gamma,\text{break} \\
0 & , \quad \text{otherwise}
\end{cases}
\]

\[t'_\text{acc} (E'_{p,\text{max}}) = \min \left[t'_\text{dyn}, t'_\text{syn} (E'_{p,\text{max}}), t'_{p\gamma} (E'_{p,\text{max}}) \right] \]

▶ Protons: \[N'_p (E'_p) \propto E'_p^{-\alpha_p} e^{-E'_p/E'_{p,\text{max}}} \quad (\alpha_p \gtrsim 2) \]
Normalize the particle densities at the source —

► Photons:

\[
\int E'_\gamma N'_\gamma(E'_\gamma) \, dE'_\gamma
\]

\[
\text{photon energy density per collision} = \frac{E_{\gamma,\text{tot}}^{\text{iso},',}}{N_{\text{coll}} \cdot V_{\text{iso}}}
\]

\[
E_{\gamma,\text{tot}}^{\text{iso},'} \sim 10^{53} \text{ erg (from observed fluence)}
\]

► Protons:

\[
\int E'_p N'_p(E'_p) \, dE'_p
\]

\[
\text{proton energy density per collision} = \frac{1}{f_{\text{e}}} \cdot \text{photon energy density per collision}
\]

\[
\text{baryonic loading (energy in p's / energy in e's + \gamma's), e.g., 10}
\]
NeuCosmA: (revised) GRB particle emission – III

Injected/ejected spectrum of secondaries (π, K, n, ν, etc.):

$$Q'(E') = \int_{E'}^\infty \frac{dE_p'}{E_p'} N_p'(E_p') \int_0^\infty c \frac{dE'_\gamma}{N'_\gamma(E'_\gamma)} R \left(x, y \right)$$

where

- $x \equiv E'/E'_p$
- $y \equiv E'_pE'_\gamma / (m_p c^2)$

R contains cross sections, multiplicities for different channels

What does NeuCosmA include?

- $p\gamma \rightarrow \Delta^+(1232) \rightarrow \pi^0, \pi^+, \ldots$
- extra K, n, π^-, multi-π prod. modes
- synchrotron losses of secondaries
- adiabatic cooling
- full photon spectrum
- neutrino flavor transitions
NeuCosmA – the full photohadronic cross section

NeuCosmA 2010

$E^2 \phi_{\nu_\mu,\bar{\nu}_\mu} / (\text{GeV sr}^{-1} \text{s}^{-1} \text{cm}^{-2})$

E/GeV

10^{-10}

10^{-9}

10^{-8}

10^{-7}

10^3 10^4 10^5 10^6 10^7 10^8

WB flux

WB Δ^+ – approx.

Especially “Multi π” contribution leads to change of flux shape; neutrino flux higher by up to a factor of 3 compared to WB treatment
Contributions to \((\nu_\mu + \bar{\nu}_\mu)\) flux from \(\pi^\pm\) decay divided in:

- \(\Delta(1232)\)-resonance
Contributions to $(\nu_\mu + \bar{\nu}_\mu)$ flux from π^\pm decay divided in:

- $\Delta(1232)$-resonance
- Higher resonances

\[E^2 \phi_{\nu_\mu + \bar{\nu}_\mu}/(\text{GeV sr}^{-1} \text{s}^{-1} \text{cm}^{-2}) \]

Contributions to \((\nu_\mu + \bar{\nu}_\mu)\) flux from \(\pi^\pm\) decay divided in:

- \(\Delta(1232)\)-resonance
- Higher resonances
- \(t\)-channel (direct production)

\[
E^2 \phi_{\nu_\mu + \bar{\nu}_\mu}(\text{GeV sr}^{-1} \text{s}^{-1} \text{cm}^{-2})
\]

\(E\) in GeV

\(\Delta^+ \text{ only} \)

\(t\)-channel

WB flux

WB \(\Delta^+\) approx.

Higher resonances

Contributions to \((\nu_\mu + \bar{\nu}_\mu)\) flux from \(\pi^\pm\) decay divided in:

- \(\Delta(1232)\)-resonance
- Higher resonances
- \(t\)-channel (direct production)
- High energy processes (multiple \(\pi\))

Especially "Multi \(\pi\)" contribution leads to change of flux shape; neutrino flux higher by up to a factor of 3 compared to WB treatment.

\[E^2 \phi_{\nu_{\mu} + \bar{\nu}_{\mu}} / (\text{GeV} \text{s}^{-1} \text{sr}^{-1} \text{cm}^{-2}) \]

\(E / \text{GeV}\)

P. Baerwald, S. Hümmer, and W. Winter,
NeuCosmA – further particle decays

\[\pi^+ \rightarrow \mu^+ + \nu_\mu \]
\[\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu \]

\[\pi^- \rightarrow \mu^- + \bar{\nu}_\mu \]
\[\mu^- \rightarrow e^- + \bar{\nu}_e + \nu_\mu \]

\[K^+ \rightarrow \mu^+ + \nu_\mu \]

\[n \rightarrow p + e^- + \bar{\nu}_e \]
NeuCosmA – further particle decays

\[
\begin{align*}
\pi^+ & \rightarrow \mu^+ + \nu_\mu \\
\mu^+ & \rightarrow e^+ + \nu_e + \bar{\nu}_\mu \\
\pi^- & \rightarrow \mu^- + \bar{\nu}_\mu \\
\mu^- & \rightarrow e^- + \bar{\nu}_e + \nu_\mu \\
K^+ & \rightarrow \mu^+ + \nu_\mu \\
n & \rightarrow p + e^- + \bar{\nu}_e
\end{align*}
\]

Resulting ν_e flux (at the observer)

\[
E^2\phi_{\nu_e}(E,\theta) \text{ (GeV sr}^{-1} \text{s}^{-1} \text{cm}^{-2})
\]

NeuCosmA – further particle decays

\[\pi^+ \rightarrow \mu^+ + \nu_\mu \]
\[\mu^+ \rightarrow e^+ + \nu_e + \bar{\nu}_\mu \]

\[\pi^- \rightarrow \mu^- + \bar{\nu}_\mu, \]
\[\mu^- \rightarrow e^- + \bar{\nu}_e + \nu_\mu \]

\[K^+ \rightarrow \mu^+ + \nu_\mu \]

\[n \rightarrow p + e^- + \bar{\nu}_e \]

Resulting \(\nu_\mu \) flux (at the observer)

\[E^2 \phi_{\nu_\mu} / (\text{GeV} \text{ sr}^{-1} \text{ s}^{-1} \text{ cm}^{-2}) \]

\[\text{Total flux} \]

\[\text{from } \mu \]

\[\text{WB flux} \]

\[\text{from } \pi \]

\[\text{from } K \]

\[P. \text{ Baerwald, S. Hümmer, and W. Winter, Phys. Rev. D83, 067303 (2011)} \]
Corrections to the analytical model:

- **shape revised:**
 - shift of first break (correction of photohadronic threshold)
 - different cooling breaks for μ's and π's
 - $(1 + z)$ correction on the variability scale of the GRB

- **Correction $c_{f\pi}$ to π prod. efficiency:**
 - $f_{C\gamma}$: full spectral shape of photons
 - $f_\approx = 0.69$: rounding error in analytical calculation
 - $f_\sigma \approx 2/3$: from neglecting the width of the Δ-resonance

- **Correction c_S:**
 - energy losses of secondaries
 - energy dependence of the mean free path of protons
Neutron model of UHECR emission under tension?

In 2012, IceCube ruled this analytical version of the fireball model –

- assumed a fixed baryonic loading of 10
- extrapolated diffuse ν flux from 117–215 GRBs (“quasi-diffuse”)
- analytical calculation – in tension with upper bounds

Graph:

- **X-axis:** Neutrino Energy (GeV)
- **Y-axis:** $E^2 \Phi_\nu$ (GeV cm$^{-2}$ s$^{-1}$ sr$^{-1}$)

Curves:

- Waxman & Bahcall
- IC40 limit
- IC40 Guetta et al.
- IC40+59 Combined limit
- IC40+59 Guetta et al.

References:

The new prediction of the quasi-diffuse GRB ν flux

Repeat the IceCube GRB neutrino analysis, with NeuCosmA —

- Same GRB sample and parameters
- Calculate ν fluence for each burst and stacked fluence $F_\nu (E_\nu)$
- Quasi-diffuse flux ($N_{GRB} = 117$):

$$\phi_\nu (E_\nu) = F_\nu (E_\nu) \frac{1}{4\pi} \frac{1}{N_{GRB}} \frac{667 \text{ bursts}}{\text{yr}}$$

Flux ~ 1 order of magnitude lower!

S. Hümmer, P. Baerwald, W. Winter,
PRL 108, 231101 (2012)
Improved IceCube bounds (2014)

- Only upgoing ν_μ's with > 1 TeV used
- Four years of data (IC-40, -59, -79, -86)
- Larger GRB catalogue (506 bursts)
- One coincident event found, with low statistical significance
- $\lesssim 1\%$ of the diffuse flux can be from prompt GRB emission

![Graph showing exclusion limits for neutrino break energy and photon index](image)

A two-component model of CR emission

Optical depth:

\[
\tau_n = \left. \frac{t_p^{-1}}{t_{\text{dyn}}^{-1}} \right|_{E_p, \text{max}} = \begin{cases} \lesssim 1, & \text{optically thin source} \\ > 1, & \text{optically thick source} \end{cases}
\]

Particles can escape from within a shell of thickness \(\lambda'_{\text{mfp}} \):

\[
\begin{align*}
\lambda'_{p, \text{mfp}} (E') &= \min \left[\Delta r', R'_{L} (E'), ct'_{p\gamma} (E') \right] \\
\lambda'_{n, \text{mfp}} (E') &= \min \left[\Delta r', ct'_{p\gamma} (E') \right]
\end{align*}
\]

\[
f_{\text{esc}} = \frac{\lambda'_{\text{mfp}}}{\Delta r'}
\]

fraction of escaping particles
We *need* direct proton escape

Scan of the GRB emission parameter space –

acceleration efficiency \[\eta = 0.1 \]

\[\eta = 1.0 \]

we need high efficiencies \(\Rightarrow \) direct proton escape is required

A two-component model of UHECR emission

Sample neutrino fluences –

Optically thin source

- $L_{\gamma,\text{iso}} = 10^{50} \text{ erg s}^{-1}$
- $\tau_n = 3.04 \times 10^{-2}$

Optically thick source

- $L_{\gamma,\text{iso}} = 10^{52} \text{ erg s}^{-1}$
- $\tau_n = 3.37$

We have seen that protons interact with the cosmological photon fields (CMB, etc.), e.g.,

\[p + \gamma \rightarrow \Delta^+ \rightarrow \pi^+ + n , \]

and neutrinos are created in the decays of the secondaries:

\[\pi^+ \rightarrow \mu^+ + \nu_\mu \]
\[\mu^+ \rightarrow \bar{\nu}_\mu + \nu_e + e^+ \]
\[n \rightarrow p + e^- + \bar{\nu}_e \]

These are called *cosmogenic neutrinos*.
Cosmogenic neutrinos

\[E^2 J_\nu (\text{all flavours}) \, [\text{GeV}^2 \text{cm}^{-2} \text{s}^{-1} \text{sr}^{-1}] \]

IC (2012–12) diffuse UHE all–flavor limit

\[E \, [\text{GeV}] \]

\(\nu ' s \) in the GRB internal shock model

Secondary injection of neutrons, neutrinos \((\text{GeV}^{-1} \text{ cm}^{-3} \text{ s}^{-1})\)

\[
Q' (E') = \int_{E'}^{\infty} \frac{dE'_p}{E'_p} N'_p (E'_p) \int_0^\infty c d\epsilon' N'_\gamma (\epsilon') R (E', E'_p, \epsilon')
\]

Normalisation to the observed GRB photon flux \(F_\gamma\)

\[
\int \epsilon' N'_\gamma (\epsilon') \, d\epsilon' = \frac{E'_\gamma \text{sh}}{V'_\text{iso}} \propto F_\gamma, \quad \int E'_p N'_p (E'_p) \, dE'_p = \frac{1}{f_e} \frac{E'_\gamma \text{sh}}{V'_\text{iso}} \propto \frac{F_\gamma}{f_e}
\]

Fluence per shell, at Earth \((\text{GeV}^{-1} \text{ cm}^{-2})\)

\[
\mathcal{F}^{\text{sh}} = t_v V'_\text{iso} \frac{(1 + z)^2}{4\pi d_L^2} Q'
\]
\(Q'(E') = \int_{E'}^{\infty} \frac{dE'_p}{E'_p} N'_p(E'_p) \int_0^\infty c d\varepsilon' N'_\gamma(\varepsilon') R(E', E'_p, \varepsilon') \)

- Photon density, shock rest frame (GeV\(^{-1}\) cm\(^{-3}\)):
 \[
 N'_{\gamma}(\varepsilon') \propto \begin{cases}
 (\varepsilon')^{\alpha_\gamma}, & \varepsilon'_{\gamma,\text{min}} = 0.2 \text{ eV} \leq \varepsilon' \leq \varepsilon'_{\gamma,\text{break}} \\
 (\varepsilon')^{\beta_\gamma}, & \varepsilon'_{\gamma,\text{break}} \leq \varepsilon' \leq \varepsilon'_{\gamma,\text{max}} = 300 \times \varepsilon'_{\gamma,\text{min}}
 \end{cases}
 \]
 \[
 \varepsilon'_{\gamma,\text{break}} \approx 300 \times \text{keV}, \alpha_\gamma \approx 1, \beta_\gamma \approx 2
 \]

- Proton density:
 \[
 N'_p(E'_p) \propto (E'_p)^{-\alpha_p} \times \exp \left[- \left(\frac{E'_p}{E'_{p,\text{max}}} \right)^2 \right] \quad (\alpha_p \approx 2)
 \]

 Maximum proton energy limited by energy losses:
 \[
 t'_{\text{acc}}(E'_{p,\text{max}}) = \min \left[t'_{\text{dyn}}(E'_{p,\text{max}}), t'_{\text{syn}}(E'_{p,\text{max}}), t'_p(\gamma)(E'_{p,\text{max}}) \right]
 \]
\(\nu' \)'s in the GRB internal shock model

Secondary injection of neutrons, neutrinos (GeV\(^{-1}\) cm\(^{-3}\) s\(^{-1}\))

\[
Q' (E') = \int_{E'}^{\infty} \frac{dE_p'}{E_p'} N_p' (E'_p) \int_{0}^{\infty} c d\epsilon' N'_\gamma (\epsilon') R (E', E'_p, \epsilon')
\]

Normalisation to the observed GRB photon flux \(F_\gamma \)

\[
\int \epsilon' N'_\gamma (\epsilon') \, d\epsilon' = \frac{E_{\text{sh}}}{V_{\text{iso}}} \propto F_\gamma, \quad \int E'_p N_p' (E'_p) \, dE'_p = \frac{1}{f_e} \frac{E_{\text{sh}}}{V_{\text{iso}}} \propto \frac{F_\gamma}{f_e}
\]

Mauricio Bustamante (CCAPP OSU)
\(\nu's\) in the GRB internal shock model

Secondary injection of neutrons, neutrinos (GeV\(^{-1}\) cm\(^{-3}\) s\(^{-1}\))

\[
Q'(E') = \int_{E'}^{\infty} \frac{dE_p'}{E_p'} N_p'(E_p') \int_{0}^{\infty} c d\varepsilon' N_\gamma'(\varepsilon') R(E', E'_p, \varepsilon')
\]

Normalisation to the observed GRB photon flux \(F_\gamma\)

\[
\int \varepsilon' N_\gamma'(\varepsilon') d\varepsilon' = \frac{E_{iso}^{sh}}{V_{iso}'} \propto F_\gamma, \quad \int E'_p N_p'(E'_p) dE'_p = \frac{1}{f_e} \frac{E_{iso}^{sh}}{V_{iso}'} \propto \frac{F_\gamma}{f_e}
\]

Fluence per shell, at Earth (GeV\(^{-1}\) cm\(^{-2}\))

\[
F_{iso}^{sh} = t_v V_{iso}' \left(1 + z\right)^2 \frac{1}{4\pi d_L^2} Q'
\]
A fast-rise-exponential-decay (FRED) gamma-ray pulse is emitted in every collision:

\[L_{\gamma} \sim R_C^{-2} \]
The prediction is robust

Simulations show only weak dependence of the flux on the boost \(\Gamma \) . . .

\[E^2 J_{\nu_\mu} / \text{GeV\cdotcm}^{-2}\cdot\text{s}^{-1}\cdot\text{sr}^{-1} \]

\[\Gamma_0=300, \langle \Gamma \rangle=222 \]

\[\Gamma_0=500, \langle \Gamma \rangle=369 \]

\[\Gamma_0=1000, \langle \Gamma \rangle=779 \]

. . . and on the GRB engine variability time \(\delta t_{\text{eng}} \)

\[E^2 J_{\nu_\mu} / \text{GeV\cdotcm}^{-2}\cdot\text{s}^{-1}\cdot\text{sr}^{-1} \]

\[N_{\text{sh}}=1000, N_{\text{coll}}=794, \delta t_{\text{eng}}=0.1s, t_v=0.67s \]

\[N_{\text{sh}}=1000, N_{\text{coll}}=85, \delta t_{\text{eng}}=1.0s, t_v=11.89 \]

\[N_{\text{sh}}=100, N_{\text{coll}}=87–97, \delta t_{\text{eng}}=0.1s, t_v=0.53–0.66s \]
Accelerating iron

- Photodisintegration destroys nuclei close to the center (~ 10^8 km) e.g., ANCHORDOQUI et al., Astropart. Phys. 29, 1 (2008)
- However, they can survive at large radii:

\[\Gamma_0 = 500, \langle \Gamma \rangle = 369 \]

\[E_{Fe,\text{max}} / \text{GeV} \]

\[R_C / \text{km} \]

MB, BAERWALD, MURASE, WINTER
Nature Commun. 6, 6783 (2015)
Contribution of GRBs to the diffuse ν flux

- **Three populations:** high-luminosity long GRBs (HL-GRB), low-luminosity long GRBs (LL-GRB), short GRBs (sGRB)
- **Sub-PeV:** GRBs contribute a few % to the IceCube diffuse flux
- **PeV:** contribution could be higher

Initialising the burst simulation

Initial number of plasma shells in the jet: \(\gtrsim 1000 \)

Initial values of shell parameters:

- Width of shells and separation between them: \(l = d = c \cdot \delta t_{\text{eng}} \)
- Equal kinetic energy for all shells \((\sim 10^{52} \text{ erg}) \)
- Shell speeds \(\Gamma_{k,0} \) follow a distribution (log-normal or other)
Propagating and colliding the shells

During propagation:
- speeds, masses, widths do not change (only in collisions)
- the new, merged shells continue propagating and can collide again

Evolution stops when either:
- a single shell is left; or
- all remaining shells have reached the circumburst medium \((\gtrsim 6 \times 10^{11} \text{ km})\)

\[
\text{final number of collisions} \approx \text{number of initial shells (\(\gtrsim 1000\))}
\]

How is the new prediction different?

- The top-contributing collisions are at the photosphere.
- Pion production efficiency there is independent of Γ:

$$f_{\gamma}^{\mathrm{ph}} \sim 5 \cdot \frac{\varepsilon}{0.25} \cdot \frac{\epsilon_e}{0.1} \cdot \frac{1 \text{ keV}}{\epsilon'_{\gamma,\text{break}}}$$

ε: energy dissipation efficiency
ϵ_e: fraction of dissipated energy as e.m. output (photons)

- ⇒ Time-integrated neutrino fluence dominated is independent of Γ:

$$\mathcal{F}_\nu \propto \frac{N_{\text{coll}} \left(f_{\gamma}^{\gamma} \gtrsim 1 \right)}{N_{\text{coll}}^{\text{tot}}} \times \min \left[1, f_{\gamma}^{\mathrm{ph}} \right] \times \frac{\epsilon_p}{\epsilon_e} \times E_{\gamma}^{\text{iso-tot}}$$

- Compare to standard predictions, which have a $\langle \Gamma \rangle^{-4}$ dependence.
- Raising ϵ_p automatically decreases ϵ_e, so the photosphere grows, but still ~ 10 photospheric collisions dominate.
How is the new prediction different?

- The top-contributing collisions are at the photosphere
- Pion production efficiency there is independent of Γ:

$$f_{p\gamma}^{ph} \sim 5 \cdot \frac{\varepsilon}{0.25} \cdot \frac{\varepsilon_e}{0.1} \cdot \frac{1 \text{ keV}}{\varepsilon'_{\gamma,\text{break}}}$$

ε: energy dissipation efficiency
ε_e: fraction of dissipated energy as e.m. output (photons)

- \Rightarrow Time-integrated neutrino fluence dominated is independent of Γ:

$$\mathcal{F}_\nu \propto \frac{N_{coll} (f_{p\gamma} \gtrsim 1)}{N_{coll}^{tot}} \times \min \left[1, f_{p\gamma}^{ph} \right] \times \frac{10}{\varepsilon_p / \varepsilon_e} \times 10^{53} \text{ erg}$$

- Compare to standard predictions, which have a $\langle \Gamma \rangle^{-4}$ dependence
- Raising ε_p automatically decreases ε_e, so the photosphere grows, but still ~ 10 photospheric collisions dominate
What about low-luminosity and choked GRBs?

- Low-luminosity and choked GRBs might be in the same family as high-luminosity long GRBs
- Due to lower jet speeds (Γ_b), they do not break out
- They might explain the TeV region of the IceCube diffuse ν flux:

![Graph showing multi-messenger GRB light curves with different jet speeds and IceCube data points.](image.png)