Introduction: We present a new catalog of Kepler planet candidates that prioritizes accuracy of planetary dispositions and properties over uniformity.

Summary: Our catalog provides better estimates of orbital periods of the planets than were available in previous catalogs, but as in the past, our tabulated estimates of period uncertainties do not fully account for transit timing variations (TTVs). We show that many planets are likely to have TTVs with long periodicities caused by various dynamical interactions, including those that lead to orbital precession, and that such TTVs imply that ephemerides of Kepler planets are not as accurate on multi-decadal timescales as would be expected by the small formal errors in these planets’ measured mean orbital periods during the Kepler epoch.

We identify multiplanet candidates that have periods that are too close to each other to remain stable. We use the abundance of such systems to estimate the percentage of apparent Kepler multiplanet systems that are distributed between two blended stars as ~2-3%.

Analysis of normalized transit durations implies that eccentricities of planets with one transiting companion are typically lower than those of planets lacking observed companions, but higher than those in high-multiplicity systems.

Additional Information: We provide a second list of planets with uniformly-derived properties for use in planetary occurrence rates studies.