RESEARCH POSSIBILITIES BEYOND DEEP SPACE GATEWAY. D. V. Smitherman¹, D. H. Needham², and R. Lewis³. ¹NASA Marshall Space Flight Center, ED04 Advanced Concepts Office, Huntsville, AL 35812, david.smitherman@gmail.com. ²NASA Marshall Space Flight Center, ST13 Heliophysics & Planetary Science Branch, Huntsville, AL 35812. debra.m.hurwitz@nasa.gov. ³NASA Goddard Space Flight Center, 455 Exploration Systems Project, rython.lewis@nasa.gov.

Introduction: The early missions for the Space Launch System (SLS) are planning to carry four crew members in the Orion spacecraft along with co-manifested habitat modules to assemble the Deep Space Gateway (DSG) in cis-lunar space. [1] The initial DSG modules will be limited in mass and volume but could be considered a stepping stone to even larger research facilities. Beyond the initial DSG manifest, SLS will have payload launch capabilities that could put in place large research facilities in a single launch as planned for the Deep Space Transport (DST). [2] This abstract explores those possibilities for larger research facilities at the DSG, using the same module design and basic layout planned for the Transport, to be implemented either before, after, or simultaneously with the Transport module production.

The research facilities module envisioned for beyond the DSG timeframe is of the scale that can be flown in a payload configuration on SLS, up to 8.4m in diameter, and about 45mt. Numerous iterations of large Mars transport habitats have been designed in previous studies since the SLS derived habitat, or “Skylab II” study in 2013. [3,4,5] An initial concept for using this module as a research facility was devised in 2015. [6] Figure 1 shows one vehicle concept of the DSG with an attached large volume research module and an asteroid retrieval vehicle.

Figure 1. Deep Space Gateway with Large Volume Research Facility.

The interior layout for the Main Deck (Figure 2) proposes a wide variety of research facilities to support deep space science, engineering, and technology development that has the potential for opening the door to permanent habitation beyond Earth.

The research facilities proposed at this early concept stage include the following from Figure 2 above:

Materials and Geological Science: (assumes availability of lunar and asteroid materials for in-situ resource utilization development)
1. Workstation 1. Physical Sciences
2. Multi-purpose Glovebox
4. Research Lab 2. Gas Chromatography Mass Spectrometer
5. Window and Sample Stowage 1. Freezer/Incubator for Geo samples
6. Research Lab 3. Raman/FTIR Spectrometer
7. Thermal/Vacuum Control System

Medical Research: (includes waste management facility with access to medical & life science stations)
8. Workstation 2. Medical and Life Sciences
9. Sample Stowage 2. Freezer/Incubator for Bio samples

Figure 2. Research Laboratory Layout: The Main Deck of a 3-deck level layout is shown, supporting the primary laboratory functions for materials and life sciences research.
Zoology Research: (space environments research on animal life forms)

10. Research Lab 4. Live Animal Quarters, including Glovebox & Cold Sample Storage

Astronomy:

11. Window Observational Research Facility (WORF). Includes tele-workstation and portable equipment for additional viewing locations

Physics:

12. Research Lab 5. Microgravity Lab

Engineering Research: (includes waste water recycling development)

13. Clothing Maintenance Workstation. Includes washer & dryer facilities


15. Shower. Integrated with waste & hygiene area

Additional features not shown include research facilities on the Upper and Lower Decks:

Lower Deck: Includes Workstations 3 & 4 for maintenance, 3D printer equipment, and printer materials processing.

Upper Deck: Includes Research Lab 6 for a Plant Growth Chamber and a Life Sciences Glovebox (Botany).

Work has been in progress for several years on a mockup of the SLS-derived habitat at the Marshall Space Flight Center (Figure 3). The layout shown in Figure 2 can be the same as a habitat for Mars transit missions by utilizing stowage along the exterior walls in place of the extensive laboratory equipment shown.

Research possibilities for the facilities described include development and test of materials processing systems from lunar and asteroid materials, medical research on the effects of the microgravity and radiation environment of deep space, food production systems development, and habitation systems research and development. In addition, this facility could provide a platform for demonstration of long duration missions in preparation for future Mars transits, which includes habitat demonstrations for four to six crew for missions of 1000 or more days.

References:


