Ground-based Magnetoseismology Observations for the Next Decade

Peter J. Chi (UCLA)

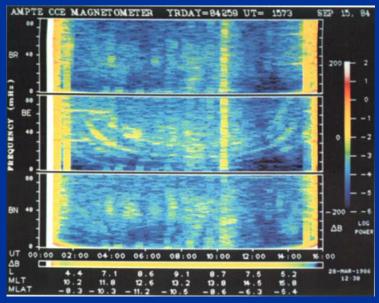
Thanks to the contributions from the ISSI Magnetoseismology Team:
J. Choi, P. A. Damiano, A. Del Corpo,
R. E. Denton, B. Ferdousi, B.Heilig,
A. M. Jorgensen, N. Lin, D. H. Lee,
R. L. Lysak, F. W. Menk, Y. Obana, J. Raeder,
K. Takahashi, M. Vellante, C. L. Waters

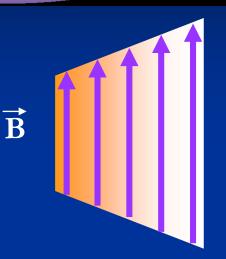
Solar and Space Physics Decadal Survey White Papers Workshop #3:

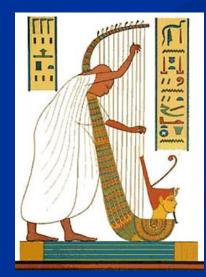
> The Future of Ground-Based Research for Magnetospheric and ITM Physics

> > March 15–16, 2022

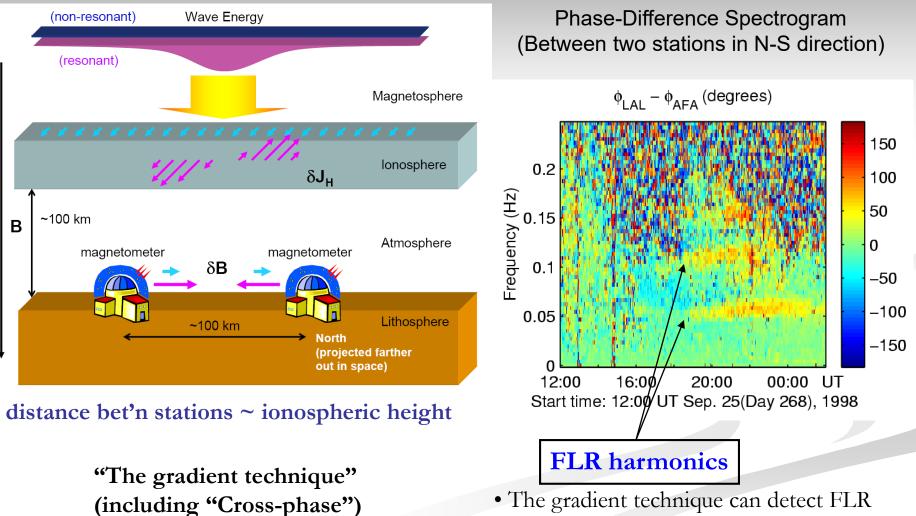
ISSI Magnetoseismology Team 2017-2018


Two Seismic Methods in Four Disciplines


	Seismology	Helio-/Astero- Seismology	Coronal Seismology	Magneto- seismology
Travel-time Method	selsmometer SKS Waves Corpo Co		flare epicentre blast wave (fast magnetoacoustic)	Solar Wind First First Enhanced Dynamic Pressure)
Normal- mode Method			kink oscillations loop footpoint	Field Line Resonances


Normal-mode Magneto-seismology

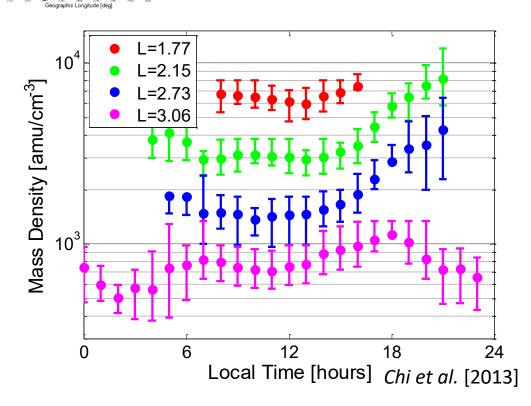
Satellite observations of resonant frequencies



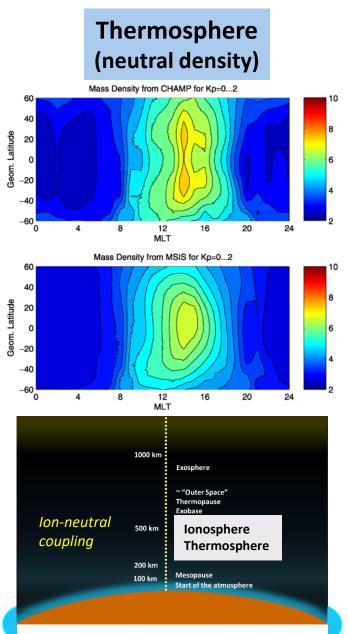
Resonant frequency:

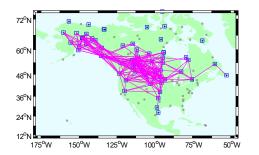
$$f = \frac{V_A}{L} \propto \frac{B}{L\sqrt{\rho_m}}$$

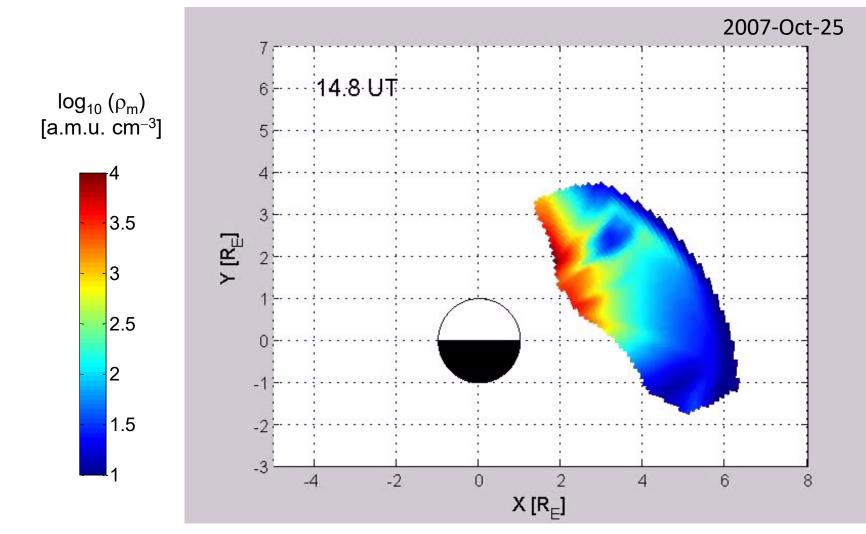
- **B:** magnetic field (well modeled)
- *L*: length of field line (well modeled)
- ρ_m : plasma mass density (less known)


Detecting FLR frequencies from the Ground

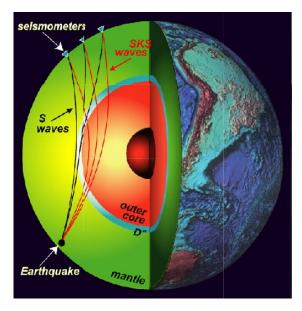
frequencies for > 80% daytime hours


Thermospheric Effect on Plasmaspheric Density

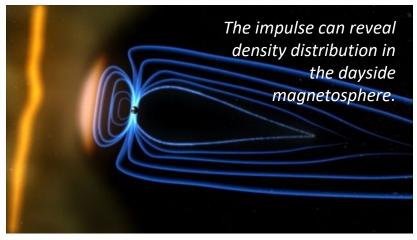

Plasmaspheric density estimated by normal-mode method


Latitude [deg]

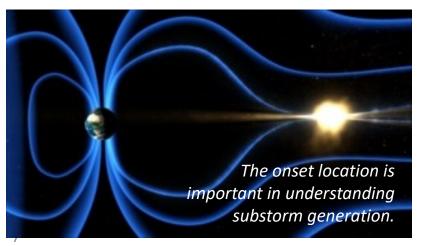
 Plasmasphere: Density increases in afternoon/evening hours are not predicted by models.

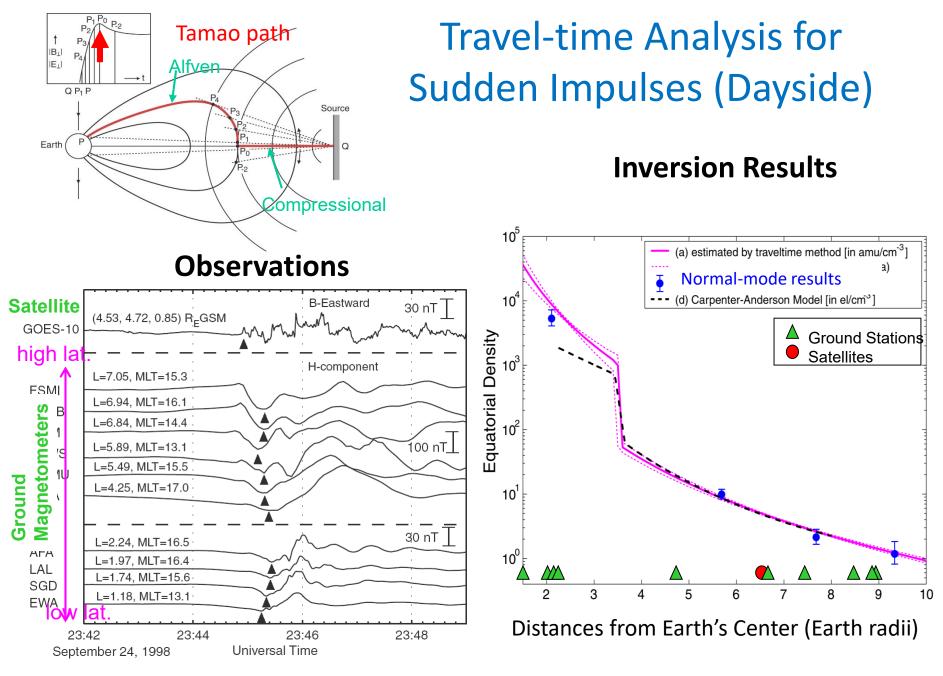


Monitoring Plasmaspheric Density by Ground-based Magnetometers (An example of

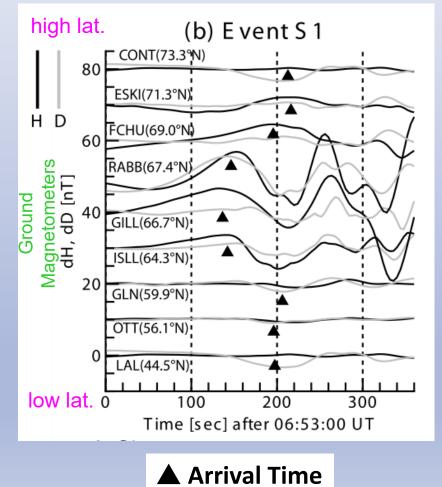

Travel-time Magneto-seismology

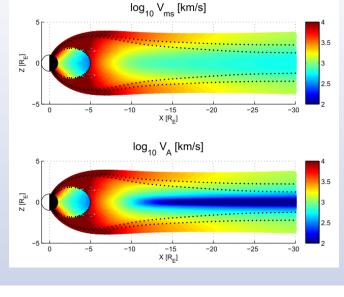
Earthquakes and seismic waves

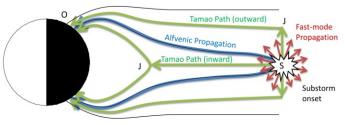



- 1. Interior structure of Earth
- 2. Center of Earthquake

Sudden impulses

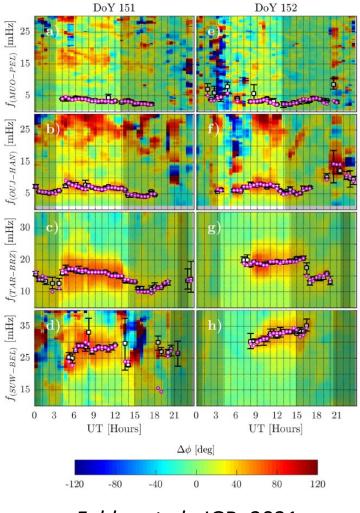

Substorm onsets



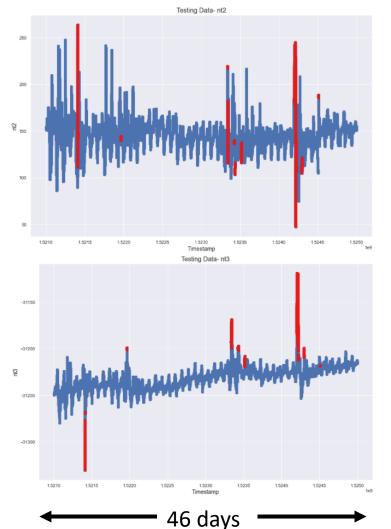


Arrival Time

Travel-time Analysis for Substorm Onsets (Nightside) Observations



Inversion Results


- Locations of substorm onsets: 18-20
 Earth radii in the tail direction
- Substorm onset starts in the magnetotail ~ 100 --200 sec before the first auroral brightening.

Machine Learning to Faciliate Big Data Analysis

Normal-mode magnetoseismology (FLR)

Foldes et al., JGR, 2021

Travel-time magnetoseismology

Zhao and Chi, AGU presentation, 2021

Summary

- Magnetoseismology has become a well-developed discipline for new ways to investigate the plasma structures and dynamics of the magnetosphere.
- The normal-mode (FLR) method requires a dense 2-D magnetometer network in the region where magnetospheric field lines are closed.
- The travel-time method needs data from the continuous operation of global magnetometer networks.
- The success in using machine learning methods is enabling many future opportunities.