A catalog of waves

-or-

A systems approach to studying waves in the solar atmosphere

Lucas A. Tarr^{1a}, Tetsu Anan¹, Gianna Cauzzi¹, Valentin Pillet¹, Kevin Reardon¹, and Thomas Rimmele¹

¹National Solar Observatory, Boulder, CO and Maui, HI

altarr@nso.edu

Background image: https://www.etsy.com/shop/HiddenHale

Outline:

- 1. Wave ubiquity
- 2. Power dependence
- 3. Sources
- 4. Propagation
- 5. The global picture

Liu+2018 ApJ 864

Waves are everywhere!

Why? Because MHD equations are hyperbolic, so basically everything generates waves

Wave power varies with everything

In addition to photospheric convective driving, there's at least some wave emission in the corona

Open Questions:

- 1. What waves are generated?
- 2. How much power do they have?
- 3. How often are they emitted?

Inhomogeneous atmosphere: Complicated and interesting wave propagation

Tarr & Linton 2019 ApJ 879

Essentially a scattering process

In total, 70% conversion, 7% transmission, 23% dissipation

Topology in a coronal Model (Titov+ 2012 ApJ 759)

Building a 'system model' for solar atmospheric wave mechanics

Wave Sources:

- 1. locations
- 2. temporal emission frequency
- 3. Power into each spatial/frequency/mode bin

Propagation Aspects

- 1. scattering locations
- 2. Ideal mode conversion
- 3. Coupling to partially-ionized modes
- 4. Interaction with "structured flux tubes"

Higher-level science questions

- 1. Dissipation (cascade, ionneutral, phase mixing, shock)
- Differential abundances (FIP effect -> solar wind)
- 3. Seismology

Observable properties

Phase speed, group speed and direction, phase relation between inferred quantities (intensity, temperature, velocity,...) all need 2 fluid treatment in photosphere and chromosphere; time-averaged vs "quasi-particle" analysis

Effect of adaptive optics/post-processing?