Ground-Based Coronal Physics in the Next Decade: The DKIST View

Tom Schad¹, Andre Fehlmann¹, Sarah Jaeggli¹, Jeff Kuhn², Haosheng Lin², Lucas Tarr¹

¹National Solar Observatory; ²University of Hawaii - Institute for Astronomy

23 February 2022

Workshop #2: Next Generation Advances in Ground-Based Solar Physics — A Decadal Preparation

National Science Foundation's Daniel K Inouye Solar Telescope

4 meter off-axis Gregorian with coronagraphic capabilities

Rimmele et al. Solar Physics 295, 172 (2020)

Science Drivers

- What governs the fundamental structure, composition, and evolution of the corona?
- How are the corona and solar wind heated and accelerated?
- How is energy stored, released, and propagated during space weather events?

Observational needs

Why ground-

based?

Measurements of the **3D distribution of coronal fields** and its embedded plasma – the "perfect multi-wavelength problem"

- Magnetic field diagnostics are accessible at VIS/IR and Radio wavelengths.
 Diffuse multi-scaled corona requires high resolution and large collecting areas.
- Proposed ground-based facilities

COSMO: Synoptic coronal polarimetry + waves obs.

FASR: Dynamic coronal magnetism probed w/ multiple mechanisms

ngGONG: Broad network coronal coverage + helioseismology

Other New Synergies EUV Magnetic Induced Transition (Hinode/EIS)

Multi vantage point and in-situ observations (PSP/SO)

MUSE → high-resolution dynamic coronal spectroscopy

1st gen: Coronagraphy with single-slit / IFU multi-wavelength polarimeters.

2nd gen: Needs to be the era of *highly-multiplexed*, *high-resolution*, *dynamic*, *coronal polarimetry*!

The Strengths of DKIST in the Corona

- Largest aperture solar coronagraph for the next decade
- Broad wavelength/thermal coverage: ~0.38 to 28 μm
- Large of field of regard (<1.5 Rsun) with targeted field-of-view comparable to active region sizes (5 arcmin).
- Highest spatial resolution with AO-corrected diagnostics (on-disk / near limb). Seeing-limited in corona.

First maps of coronal line polarization from Cryo-NIRSP

** Preliminary Verification Data ** [~10 min single-slit raster]

J. Kuhn, A. Fehlman, T.Schad, I.Scholl and the Cryo-NIRSP team

First multi-wavelength IFU coronal line measurements from DL-NIRSP

** Preliminary Verification Data **

H. Lin, S. Jaeggli, T. Anan, and the DL-NIRSP Team

pullds spectropolarimetric full data cubes: [X : Y : λ : S [=I,Q,U,V] : t]

DKIST enhancements under development

Objectives: Increase observing efficiency, cadence, and simultaneous coverage of dynamic multi-thermal corona.

- M9b short-pass beam-splitter split near 1 micron
 - Allows simultaneous operation of Cryo-NIRSP and post-AO instruments
 - One example configuration:
 - Cryo-NIRSP spectropolarimetry at Si IX 3.9 um (or Si X 1430) + Context Imager
 - DL-NIRSP IFU spectropolarimetry at Fe XI 789, Fe XIII 1074/1079 nm
- New coronal spectral diagnostics
 - First light filter set emphasizes coronal magnetic field measurements.
 - Baseline new filters for FIP diagnostics: Ar⁺¹² lines at λ8339Å and λ10143Å
 - Continuously varying order sorting filters for IR coronal spectrum exploration.
- Multiplexing the Cryo-NIRSP: low dispersion multi-slit configuration
 - Low dispersion single-slit provides simultaneous multi-spectral diagnostics
 - Multiple slit increase field scanning cadence (baseline: 5 slits separated by ~12")
 - With additional throughput, configuration offers > ~10x efficiency boost.

Proposed low dispersion multi-slit Cryo-NIRSP

5 slits <u>(+/- 250 km/s)</u> Resolving up to ~35,000

56 ln/mm, 33 deg blaze
Fe XIII 1074 nm (above)
Si IX 3934 nm works as well.
**Potentially 8 slits

1 slit wide-bandpass

Simultaneous coverage of He I 1083 nm and density sensitive Fe XIII lines 1074/1079 nm

Future concepts for DKIST coronal science instrumentation

- Techniques for boosting spectropolarimetric observing efficiency need to be advanced
 - Additional slit multiplexing for simultaneous spectral coverage.
 - Image slicers and/or IFUs for coronal use cases
 - Infrared Fabry Perot or Lyot Filter instrument

Comment: It can be difficult to optimize an instrument for both high-resolution and wide-field high dynamic range science.

Needs well-founded science requirements!

- Potential in coronal linear polarization imaging
 - Multi-temperature linear polarization imaging for dynamic field topology constraints
 - Ultra high bandpass filters + large format micro-polarizer cameras
- Facility maintenance optimization and improvements
 - In-situ washing operations will continually be improved with experience gained.
 - Alternative cleaning methods/infrastructure TBD?
- Other related science areas and technologies
 - Mid-infrared imaging of flare continua [> 5 um]. TIDES [Penn et al.]
 - Low spectral resolution broad-band IFU spectroscopy for flares
- Advance frontier in coronal spatial resolution
 - Daytime laser guide stars for adaptive optics [Beckers 2002] / ORCAS

Summary and synergies: Ground-based coronal science

How do we plan in this decadal to be successful with ground-based coronal physics in the next decade?

- 1. Reaffirm what success entails to understand the complex corona / inner heliosphere system.
- 2. Advance instrumentation to claim more of DKIST's frontier for coronal science
 - a. Strengths: large-aperture, high-dynamic range, broad wavelength, high spatial resolution.
 - b. Multi-wavelength polarimetry of the extended magnetized corona / solar wind.
 - c. Other frontiers (FIP effect, flare science, etc.)
- 3. Understand the complementary aspects of DKIST, FASR, COSMO, ngGONG and space-based missions (e.g. MUSE)
 - a. We must continue to develop models that demonstrate complementarity.

Extra slides

Science highlight: coronal Loops or Veils?

Malenshenko+ (2021)

- Synthetic loops can be traced to wrinkled sheet-like structures in MURAM.
- Loops may not be the circular or elliptical structures we idealize.
- Can be tricky to distinguish observationally.

Perpendicular slices of the LOS distribution of the contribution

Science highlight: coronal Loops or Veils?

Malenshenko+ (2021)

- Synthetic loops can be traced to wrinkled sheet-like structures in MURAM.
- Loops may not be the circular or elliptical structures we idealize.
- Can be tricky to distinguish observationally.

Synthetic polarized contribution functions at right using techniques of Schad & Dima (2020. High dynamic range polarimetry at near diffraction limited-scales helps constrain simple vs complex structuring.