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e What governs the fundamental structure, composition, and evolution of the corona?
e How are the corona and solar wind heated and accelerated?
e How is energy stored, released, and propagated during space weather events?

Measurements of the 3D distribution of coronal fields and its embedded plasma
— the “perfect multi-wavelength problem”

1. Magnetic field diagnostics are accessible at VIS/IR and Radio wavelengths.
2. Diffuse multi-scaled corona requires high resolution and large collecting areas.

COSMO: Synoptic coronal polarimetry + waves obs.
FASR: Dynamic coronal magnetism probed w/ multiple mechanisms
ngGONG: Broad network coronal coverage + helioseismology

EUV Magnetic Induced Transition (Hinode/EIS)
Multi vantage point and in-situ observations (PSP/SO)
MUSE — high-resolution dynamic coronal spectroscopy

1st gen: Coronagraphy with single-slit / IFU multi-wavelength polarimeters.
2nd gen: Needs to be the era of highly-multiplexed, high-resolution,
dynamic, coronal polarimetry!



The Strengths of DKIST in the Corona Coronal loop

widths
[Aschwanden&Peter 2017]

e Largest aperture solar coronagraph for the next decade

e Broad wavelength/thermal coverage: ~0.38 to 28 ym
e Large of field of regard (<1.5 Rsun) with targeted field-of-view * =P I | ! i 9
comparable to active region sizes (5 arcmin). 1 e | oo @!

e Highest spatial resolution with AO-corrected diagnostics (on-disk / “r | e "2
near limb). Seeing-limited in corona. ‘ ‘ |

Effective Coronal Aperture
[Penn et al. (2004)]
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DKIST coronal Fe XIIl 1074 nm
commissioning data [units: millionths of disk center brightness]

Int.

SDO/AIA 171 A

1200 0:4

0.2

Arcsec

1050
—0.4
900
2200 -150 -100 =50 0 50 100 150 200 100¢ i
Arcsec -25 0 25 -25 0 25 -25 0 25

First maps of coronal line polarization from Cryo-NIRSP
** Preliminary Verification Data ** [~10 min single-slit raster]
J. Kuhn, A. Fehiman, T.Schad, |.Scholl and the Cryo-NIRSP team

Other coronal lines measured to date by Cryo-NIRSP: Fe XIIl 1079 nm, Si X 1430 nm, Si IX 3934 nm



Y Pixel

First multi-wavelength IFU coronal line

measurements from DL-NIRSP

** Preliminary Verification Data **
H. Lin, S. Jaeggli, T. Anan, and the DL-NIRSP Team
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DKIST enhancements Objectives: Increase observing efficiency, cadence, and
under development simultaneous coverage of dynamic multi-thermal corona.

e M9b short-pass beam-splitter split near 1 micron
o  Allows simultaneous operation of Cryo-NIRSP and post-AO instruments
o One example configuration:
m  Cryo-NIRSP spectropolarimetry at Si IX 3.9 um (or Si X 1430) + Context Imager
m DL-NIRSP IFU spectropolarimetry at Fe XI 789, Fe XIll 1074/1079 nm

e New coronal spectral diagnostics
o First light filter set emphasizes coronal magnetic field measurements.
o Baseline new filters for FIP diagnostics: Ar*'? lines at A8339A and AM10143A
o  Continuously varying order sorting filters for IR coronal spectrum exploration.

e Multiplexing the Cryo-NIRSP: low dispersion multi-slit configuration
o Low dispersion single-slit provides simultaneous multi-spectral diagnostics
o Multiple slit increase field scanning cadence (baseline: 5 slits separated by ~12”)
m  With additional throughput, configuration offers > ~10x efficiency boost.



Proposed low dispersion multi-slit Cryo-NIRSP

5 slits (+/- 250 km/s)
Resolving up to ~35,000

Current CryoNIRSP image
Science Verification Data
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Future concepts for DKIST coronal science instrumentation

e Techniques for boosting spectropolarimetric observing efficiency need to be advanced
o  Additional slit multiplexing for simultaneous spectral coverage.
o Image slicers and/or IFUs for coronal use cases
o Infrared Fabry Perot or Lyot Filter instrument

Comment: It can be difficult to optimize an instrument for both high-resolution and wide-field high dynamic range science.
Needs well-founded science requirements!

e Potential in coronal linear polarization imaging
o  Multi-temperature linear polarization imaging for dynamic field topology constraints
o  Ultra high bandpass filters + large format micro-polarizer cameras

e Facility maintenance optimization and improvements
o In-situ washing operations will continually be improved with experience gained.
o Alternative cleaning methods/infrastructure TBD?

e Other related science areas and technologies
o  Mid-infrared imaging of flare continua [ > 5 um]. TIDES [Penn et al.]
o  Low spectral resolution broad-band IFU spectroscopy for flares

e Advance frontier in coronal spatial resolution
o Daytime laser guide stars for adaptive optics [Beckers 2002] / ORCAS



Summary and synergies: Ground-based coronal science

How do we plan in this decadal to be successful with ground-based coronal
physics in the next decade?

1. Reaffirm what success entails to understand the complex corona / inner heliosphere system.

2. Advance instrumentation to claim more of DKIST’s frontier for coronal science

a. Strengths: large-aperture, high-dynamic range, broad wavelength, high spatial resolution.
b. Multi-wavelength polarimetry of the extended magnetized corona / solar wind.
c. Other frontiers (FIP effect, flare science, etc.)

3. Understand the complementary aspects of DKIST, FASR, COSMO, ngGONG and
space-based missions (e.g. MUSE)

a. We must continue to develop models that demonstrate complementarity.
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Extra slides



Science highlight: coronal Loops or Veils?

Slica 38

Malenshenko+ (2021) N
* Synthetic loops can be traced to wrinkled
sheet-like structures in MURAM.
* Loops may not be the circular or elliptical
structures we idealize.
e Can be tricky to distinguish observationally.

Slice 5

Perpendicular slices of the LOS
distribution of the contribution



Science highlight: coronal Loops or Veils?
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* Loops may not be the circular or elliptical
structures we idealize.
e Can be tricky to distinguish observationally.
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Synthetic polarized contribution functions at right using techniques of Schad & Dima (2020.
High dynamic range polarimetry at near diffraction limited-scales helps constrain simple vs complex structuring.



