
Overview of Survive the Night Technology Development Investments

Presentation to CLPS Survive the Night Workshop

Kevin Somervill / <u>kevin.m.somervill@nasa.gov</u> NASA STMD Lunar Surface Innovation Initiative December 6, 2022

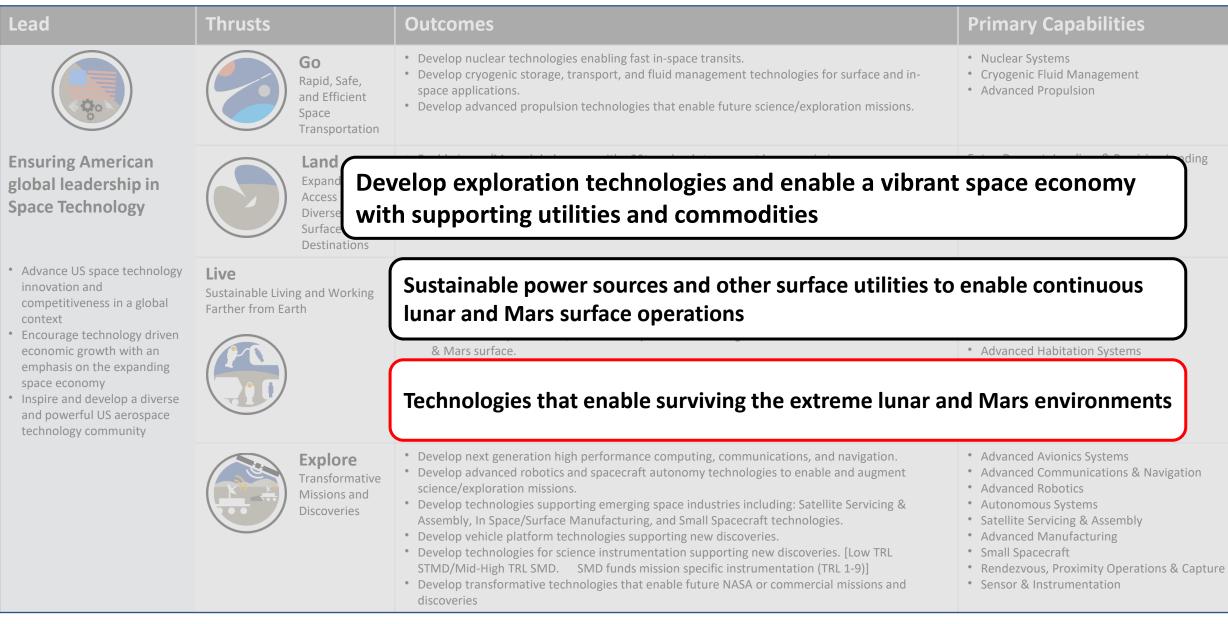


- Introduction
- Historical Note: Surveyor Experience
- STMD Strategic Framework
- Power Technology Research
- Thermal Management
- Cold Operable Actuators
- Lunar Terrain Modeling (LuNaMaps)
- LSIC Community Engagement

Historical Note: Surveyor Missions

- Seven Surveyor flights from 1966 1968 in support of Apollo development and planning
 - 2 and 4 crashed
 - <u>https://nssdc.gsfc.nasa.gov/nmc/spacecraft/query</u>
- 1 Withstood the first lunar night and near high noon on its second lunar day, terminated due to a dramatic drop in battery voltage just after sunset
 - Engineering interrogations continued until January 7, 1967 (6 months)
- 3 Failed to restart after lunar night
- 5 Survived 3 lunar nights
 - Operated about 200 hours after sunset second night
- 6 Communications resumed after first lunar night, but no useful data second day
 - Operated concurrently with Surveyor 5
 - Performed first powered takeoff from the lunar surface
- 7 Operated for **80 hours after first sunset**
 - Second lunar day operations began February 12, 1968, and were terminated on February 21

[https://apod.nasa.gov/apod/ap181022.html]


STMD Strategic Framework

Lead	Thrusts	Outcomes	Primary Capabilities
	Go Rapid, Safe, and Efficient Space Transportation	 Develop nuclear technologies enabling fast in-space transits. Develop cryogenic storage, transport, and fluid management technologies for surface and in-space applications. Develop advanced propulsion technologies that enable future science/exploration missions. 	 Nuclear Systems Cryogenic Fluid Management Advanced Propulsion
Ensuring American global leadership in Space Technology	Land Expanded Access to Diverse Surface Destinations	 Enable Lunar/Mars global access with ~20t payloads to support human missions. Enable science missions entering/transiting planetary atmospheres and landing on planetary bodies. Develop technologies to land payloads within 50 meters accuracy and avoid landing hazards. 	Entry, Descent, Landing, & Precision Landing
 Advance US space technology innovation and competitiveness in a global context Encourage technology driven economic growth with an emphasis on the expanding space economy Inspire and develop a diverse and powerful US aerospace technology community 	Live Sustainable Living and Working Farther from Earth	 Develop exploration technologies and enable a vibrant space economy with supporting utilities and commodities Sustainable power sources and other surface utilities to enable continuous lunar and Mars surface operations. Scalable ISRU production/utilization capabilities including sustainable commodities on the lunar & Mars surface. Technologies that enable surviving the extreme lunar and Mars environments. Autonomous excavation, construction & outfitting capabilities targeting landing pads/structures/habitable buildings utilizing in situ resources. Enable long duration human exploration missions with Advanced Habitation System technologies. [Low TRL STMD; Mid-High TRL SOMD/ESDMD] 	 Advanced Power In-Situ Resource Utilization Advanced Thermal Advanced Materials, Structures, & Construction Advanced Habitation Systems
	Explore Transformative Missions and Discoveries	 Develop next generation high performance computing, communications, and navigation. Develop advanced robotics and spacecraft autonomy technologies to enable and augment science/exploration missions. Develop technologies supporting emerging space industries including: Satellite Servicing & Assembly, In Space/Surface Manufacturing, and Small Spacecraft technologies. Develop vehicle platform technologies supporting new discoveries. Develop technologies for science instrumentation supporting new discoveries. [Low TRL STMD/Mid-High TRL SMD. SMD funds mission specific instrumentation (TRL 1-9)] Develop transformative technologies that enable future NASA or commercial missions and discoveries 	 Advanced Avionics Systems Advanced Communications & Navigation Advanced Robotics Autonomous Systems Satellite Servicing & Assembly Advanced Manufacturing Small Spacecraft Rendezvous, Proximity Operations & Capture Sensor & Instrumentation

STMD Strategic Framework

CLPS Survive the Night Workshop - Technology Investments

SPACE TECHNOLOGY PORTFOLIO

Activities span the technology readiness spectrum.

EARLY STAGE INNOVATION AND PARTNERSHIPS

• Early Stage Innovation

- Space Tech Research Grants
- Center Innovation Fund
- Early Career Initiative
- Prizes, Challenges & Crowdsourcing
- NASA Innovation Advanced Concepts

LOW

Technology Transfer

SBIR/STTR PROGRAMS

- Small Business **Innovation Research**
- Small Business

TECHNOLOGY MATURATION

- Game Changing Development
- Lunar Surface **Innovation Initiative**

TECHNOLOGY DEMONSTRATION

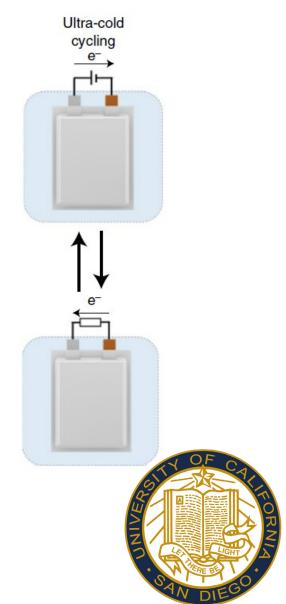
Technology Demonstration Missions

HIGH

- Small Spacecraft Technology
- Flight Opportunities

Technology Drives Exploration Technology Readiness Level

CLPS Survive the Night Workshop - Technology Investments


Ultra-Low Temperatures Lithium Metal Batteries

NSTGRO20

"Development of Novel Electrolytes for High-Energy Lithium Metal Batteries Operating at Ultra-Low Temperatures", John Holoubek, University of California, San Diego

- Research on cold charge and discharge operation as well as higher energy density potential of Lithium Metal Batteries (LMB)
- Improved electrolyte demonstrates > 98 % Li metal reversibility down to -60 °C where conventional electrolytes produce catastrophic cell shorting
- Cells with improved electrolyte retain 84% and 76% of room temperature capacity cycled at -40 and -60 °C (stable over 50 cycles)

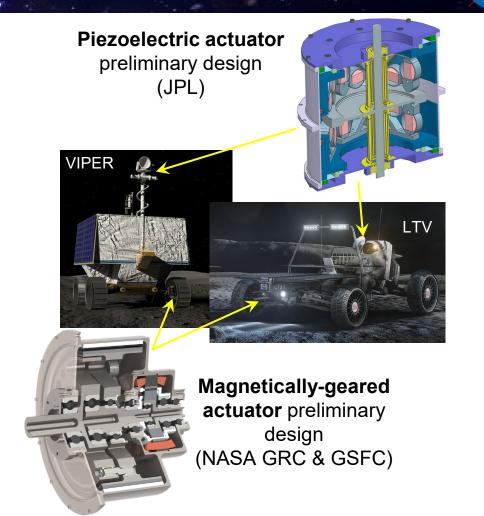
Holoubek, J., Liu, H., Wu, Z. et al. Tailoring electrolyte solvation for Li metal batteries cycled at ultralow temperature. Nat Energy 6, 303–313 (2021). https://doi.org/10.1038/s41560-021-00783-z

Thermal Management

Shape Memory Alloys for Regulating TCS in Space (SMARTS) is developing a complete, compact, rugged, and environmentally activated thermal control system (TCS) (completed 2022)

Planetary and Lunar Environment Thermal Toolbox Elements (PALETTE) is developing passive thermal management tools necessary for future instrument and system operation in extreme environments.

Cold Operable Actuators

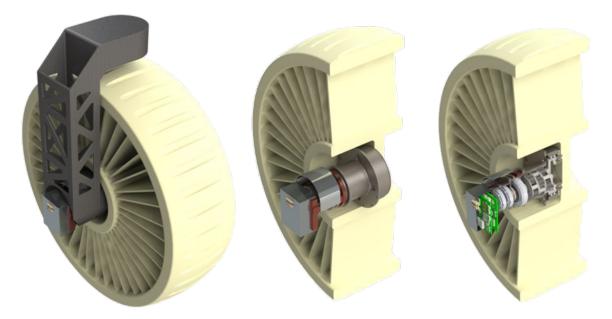

NASA

Bulk Metallic Glass (BMG) gearboxes that function without heaters in a 100 K environment

Engineering Model (EM) Planetary Gearboxes just prior to motor integration and closeout

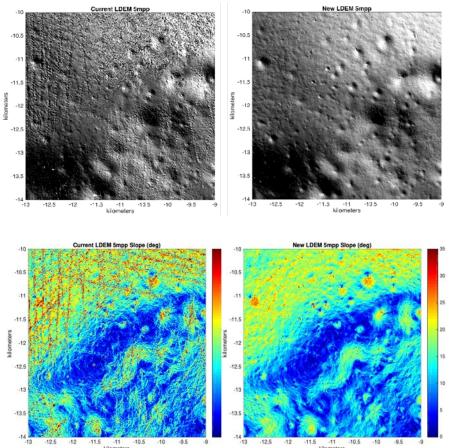
Motor for Dusty and Extremely Cold Environment (MDECE) will operate unheated and continuously for long durations at an ambient temperature of –240 C (33 K)

Distributed Extreme Environments Drive System



2021 SBIR S-Ph2

space systems


Distributed Extreme Environments Drive System (DEEDS) is a modular, scalable, electro-mechanical actuation system designed to survive and operate through the lunar night. The goal of the DEEDS program is to demonstrate -180°C operations.

Lunar Rover Wheel Drive Application for DEEDS

Lunar Navigation Maps (LuNaMaps)

- Develop a suite of methods and tools to render Digital Elevation Maps (DEMs) for onboard navigation, mission planning, and other purposes
- Improve the coverage, accuracy, and resolution of existing lunar maps by merging orbital reconnaissance data
 - Synthetically enhance map products derived from orbital imagery to include lander-scale features
 - Evaluate terrain rendering tools to determine performance limitations and future needs for simulation, testing and V&V of lunar maps
- Coupled with rendering software and a solar model, site illumination can be evaluated

LOLA DEM (top) and slope map (bottom) of a high-priority landing site at the lunar south pole (5 m/pix) before (left) and after (right) cleaning.

Lunar Surface Innovation Consortium (LSIC)

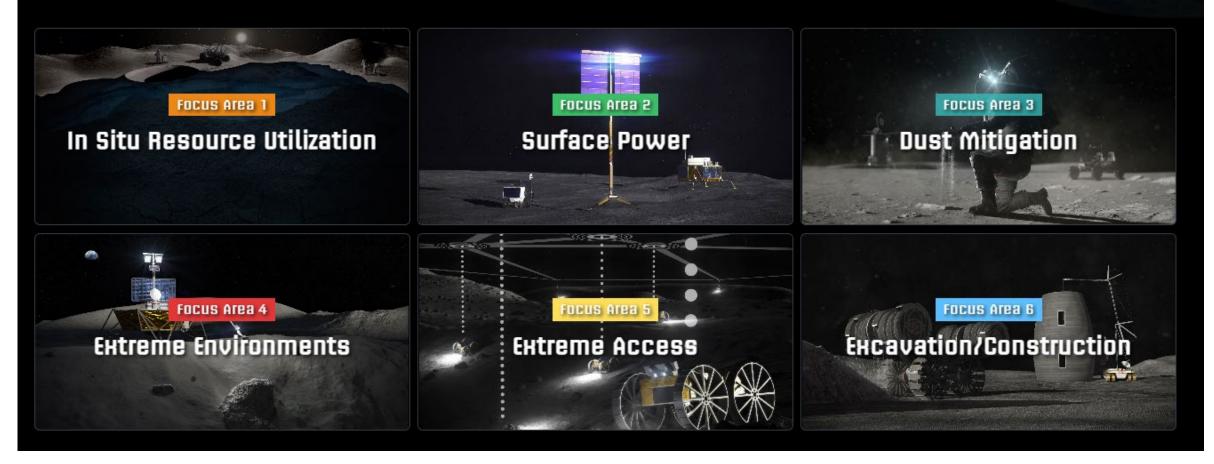
Nationwide alliance of universities, commercial companies, non-profit research institutions, NASA, and Other Government Agencies with a vested interest in our nation's campaign to establish a sustained presence on the Moon.

LSIC Objectives include:

- Identifying lunar surface technology needs and assessing the readiness of relative systems and components
- Making recommendations for a cohesive, executable strategy for development and deployment of the technologies required for successful lunar surface exploration
- Providing a central resource for gathering information, analytical integration of lunar surface technology demonstration interfaces, and sharing of results.

Focus Groups (FG) are the primary means for consistent interaction with the LSIC Community. This includes:

- Establishing collaborative relationships among members via virtual monthly forums, quarterly virtual workshops, and LSIC member site visits
- Building community and developing talent
- Compiling member input and reporting outcomes and recommendations


If interested in further information, please visit lsic.jhuapl.edu

LSIC Focus Groups

Focus Areas

Technology Development Investments Summary

- Framework and organization structured for targeted development addressing high-priority gaps
- Pipeline of technologies at various levels of maturity
- Various approaches to the system-level challenge of sustaining presence on the lunar surface
- Community engagement to foster and be responsive to community input and interests
- All of this enables us to adapt as we learn more

Technology Drives Exploration