

Laying the trusted foundations of a robust lunar economy with commercial delivery, communications, navigation, and mobility services.

And just getting started.

**Ross Rickards** 

Systems Engineer Sr. Staff Ross.M.Richards@lmco.com

# Lunar Mobility and Power as Key Enablers

Delivering the foundation of our lunar infrastructure

Offering services for a broad and diverse range of partners including NASA, Industry, and International customers

Meeting the challenge to deliver a truly sustained, and sustainable, presence on the Moon



## **Mobility**

In partnership with GM and MDA, the LMV Rover meets diverse needs for both human and robotic lunar mobility



#### **Power**

Lockheed Martin is investing in the future of power on the lunar surface, supporting our customers' near and long-term missions



# Lunar Mobility Vehicle Rover



Downlink and uplink data rates measurable in tens of Mbps leveraging Parsec<sup>TM</sup>. Proximity networking enabled to support data transfer to/from payloads & nearby systems.

### **Sensors & Autonomy**

Capable of full autonomy and equipped with an advanced, high-resolution, multi-modal sensor suite.

### Solar Array

Shareable power output measurable in kW.

### Payloads

Full power and data support of multiple payload systems.
Combined payload & haul capacity exceeding a metric ton.

#### Robotic Arm

General purpose manipulator with multimeter reach and tens of kg loading capacity.

Full Autonomy & Sensors

Ruggedized Design

Long Life

Paradigm Shifting Mobility

**Evolvable and Scalable** 

#### Tires •

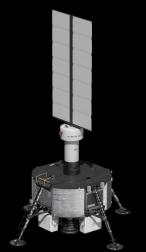
Autonomous, high speed cruise on complex terrain with a lifetime range measurable in tens of thousands of km.

#### **Vehicle Chassis**

Rugged frame, with extra protections to manage regolith and a challenging lunar environment.

### **GM Ultium Battery**

Sized for a fully survivable lunar night with missions and single traverses of hundreds of km on a single charge.


## Power Generation to Support a Robust Lunar Economy

## **Vertical Solar Array Technology (VSAT)**



- The Lockheed Martin VSAT will provide 10kW of mobile power, while being rugged enough to survive the harsh lunar environment for up to ten years.
- It offers transportable solar power generation by means of wheels, a mobility vehicle, and a z-fold flight-qualified array deployment and retraction mechanism.
- The VSAT design leverages the heritage TRL-9 Multi-mission Modular Solar Array (MMSA) and flight proven power conditioning and mechanism hardware.
- The modular VSAT system provides flexible and reliable power solutions for early implementation in the south pole lunar architecture, with a solar array design that is scalable up to 5x the existing design implementation.

## **Fission Surface Power (FSP)**



- The Lockheed Martin FSP will produce >40kWe of continuous power by means of a monolithic core and a direct Brayton power conversion system.
- This technology excels in locations where sunlight is difficult to access for long stretches of time, such as shadowed regions or low latitudes.
- The monolithic core is designed in partnership with BWX Technologies using materials selected for their maturity, simplicity, reliability, and scalability.
- The FSP design leverages innovative, ultra-light deployable radiators with the highest mass efficiency available and utilizes the same z-fold array deployer as VSAT, providing high commonality between technologies.
- The reactor design is highly scalable, capable of increasing reactor power by orders of magnitude.

## Power Generation to Support a Robust Lunar Economy

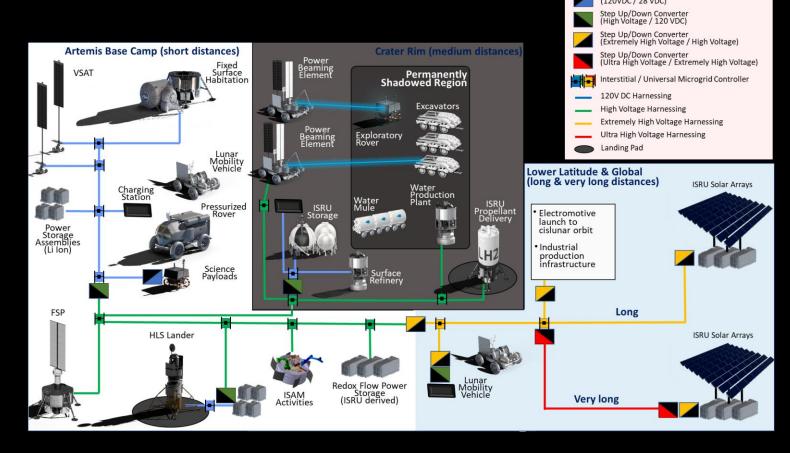
#### **Lunar Surface Power Distribution**

- Lockheed Martin recommends implementing Open System Architecture (OSA) principles for lunar surface power distribution.
- OSA describes a set of system design principles which aims to produce systems that are inherently interoperable, modular, scalable, and minimize recourse to retrofit, redesign, and refresh.
- It is critical to implement sufficient design flexibility via OSA into the lunar surface power distribution architecture as it will

evolve over time and the needs/use cases will emerge as the architecture develops.

# **Lockheed Martin Current/Planned Technology Efforts**

#### **Power Generation**


- VSAT
- FSP

#### **PMAD**

- High Voltage Power Conversion Unit (HV-PCU)
- 120VDC/28VDC Power Converter
- Interstitials
- Harnessing

#### **Energy Storage**

GM Ultium Batteries





## Questions?



#### **Additional Questions or Comments?**

Lunar Mobility Vehicle
Christie Iacomini, PhD
Christie.Iacomini@Imco.com

Vertical Solar Array Technology
Alya Elhawary
Alya.Elhawary@Imco.com

Fission Surface Power
Lisa May
Lisa.D.May@lmco.com