Commercial Lunar Payload Services Survive the Night Technology Workshop

December 6–8, 2022

Cleveland, Ohio

 

Program

 

Times listed are Eastern Standard Time (EST).

Find your local time here.

 

Tuesday, December 6, 2022

8:00 a.m.

Mission Integration Center (MIC), Bldg. 162

Registration, Coffee, and Networking Opportunities

8:30 a.m.

Mission Integration Center (MIC) Auditorium, Bldg. 162

CLPS Overview and Technology Investments

11:45 a.m.

Mission Integration Center (MIC) Auditorium, Bldg. 162

Day One: Lunch and Presentation

2:00 p.m.

Mission Integration Center (MIC) Auditorium, Bldg. 162

Nuclear Power Session

4:00 p.m.

Research Support Building (RSB), Bldg. 164

Poster Session: Power Technologies

4:00 p.m.

Research Support Building (RSB), Bldg. 164

Poster Session: Thermal and Illumination

4:00 p.m.

Research Support Building (RSB), Bldg. 164

Poster Session: Other Technologies to Enable Survivability or Operation

6:00 p.m.

The Aviator, Research Support Building (RSB), Bldg. 164

Networking

 

Wednesday, December 7, 2022

8:15 a.m.

Mission Integration Center (MIC), Bldg. 162

Registration, Coffee, and Networking Opportunities

8:30 a.m.

Mission Integration Center (MIC) Auditorium, Bldg. 162

Introduction to CLPS Providers

9:45 a.m.

Mission Integration Center (MIC) Auditorium, Bldg. 162

Power Technologies for CLPS Landers

12:15 p.m.

Mission Integration Center (MIC) Auditorium, Bldg. 162

Day Two: Lunch and Presentation

2:15 p.m.

Mission Integration Center (MIC) Auditorium, Bldg. 162

Thermal and Illumination

5:30 p.m.

The Aviator, Research Support Building (RSB), Bldg. 164

Networking

 

Thursday, December 8, 2022

8:15 a.m.

Mission Integration Center (MIC), Bldg. 162

Registration, Coffee, and Networking Opportunities

8:30 a.m.

Mission Integration Center (MIC) Auditorium, Bldg. 162

Long-Term Plans for Lunar Research and Lunar Geophysical Network

9:30 a.m.

Mission Integration Center (MIC) Auditorium, Bldg. 162

Other Technologies to Enable Survivability or Operation

10:15 a.m.

Mission Integration Center (MIC) Auditorium, Bldg. 162

Dust Mitigation

11:00 a.m.

Mission Integration Center (MIC) Auditorium, Bldg. 162

Visions into the Future

12:00 p.m.

Mission Integration Center (MIC) Auditorium, Bldg. 162

Day Three: Lunch and Presentation

1:00 p.m.

Mission Integration Center (MIC) Auditorium, Bldg. 162

Closing Remarks and Tour Logistics

1:20 p.m.

Mission Integration Center (MIC) Auditorium, Bldg. 162

Tours and Networking

 

 

Tuesday, December 6, 2022

CLPS OVERVIEW AND TECHNOLOGY INVESTMENTS

8:30 a.m.   Mission Integration Center (MIC) Auditorium, Bldg. 162

Times

Authors (*Presenter)

Abstract Title and Summary

8:30 a.m.

Kremic T.*

Introduction and Logistics

8:45 a.m.

Kenyon J. *

NASA Glenn Research Welcome

9:00 a.m.

Kearns J. *

CLPS Overview and Survive the Night Goals  [PRESENTATION]

9:30 a.m.

Engelund W. *

Overview of STMD’s Power and Thermal Technology Investments  [PRESENTATION]

10:00 a.m.

 

BREAK

10:15 a.m.

Weber R. *

Surviving (and Operating) Through the Lunar Night: Science Drivers, Environmental Challenges, and Current Status [PRESENTATION]

10:45 a.m.

Somervill K. *

NASA Survive the Night Technology Development Investments  [PRESENTATION]

11:15 a.m.

Barrett M. *

Panel Discussion

 

Tuesday, December 6, 2022

DAY ONE: LUNCH AND PRESENTATION

11:45 a.m.   Mission Integration Center (MIC) Auditorium, Bldg. 162

Times

Authors (*Presenter)

Abstract Title and Summary

11:45 a.m.

Newman J. M. *

RPS Program Status and Nuclear Launch Authorization Considerations  [PRESENTATION]

1:00 p.m.

Compass Lab 

Overnight Power and Thermal Solutions for Small Landers

 

BACK TO TOP

 

Tuesday, December 6, 2022

NUCLEAR POWER SESSION

2:00 p.m.   Mission Integration Center (MIC) Auditorium, Bldg. 162

Times

Authors (*Presenter)

Abstract Title and Summary

2:00 p.m.

Button R. *

Nuclear Power Session Introduction

2:15 p.m.

Fisher B. *  Morrison C.

Commercially Available Radioisotopes to Survive the Lunar Night [#2026]  [PRESENTATION]
The high specific power of commercial radioisotope systems developed by Ultra Safe Nuclear enables access to extreme environments such as PSRs and the lunar night. With a clear path toward launch they are ideal for integration into landers and rovers.

2:35 p.m.

Magistrati G. *  Bayon S.  Benamar K.  Dombovari G.  Ferlet-Cavrois V.  Fongarland C.  Hatton J.  Landgraf M.  Rebuffat D.  Summerer L.

Development of a European Operational Capability for the Use of Radioisotope Power Source in Space [#2018] [PRESENTATION]
The ESA programme to develop Radioisotope Power Sources for Space Programmes will be presented. It is based on several technology development activities that have reached already a TRL of 4 for Radioisotope Heater Unit.

2:55 p.m.

Gilbert A. Q. *

Radioisotope Power Sources to Survive the Lunar Night by 2025 [#2033]
Commercial radioisotope innovation can provide thermal and electric solutions to enable rovers and landers to not just survive the lunar night but operate for years.

3:15 p.m.

Landis G. A. *  Cabauy P.

Betavoltaic Power Sources for Low-Power Applications in the Dark [#2030]
Betavoltaic converters, solid-state devices that produce energy from a beta-emitting isotope source, are low power device, that may be a suitable choice for “keep-alive” energy to power the electronics of small landers across the lunar night.

3:35 p.m.

Kennedy J. C. *  Rearden B. T.  Rhodes D. J.  Fallgren A. J.

Compact Fission Battery for Lunar Night Survival [#2040]
X-energy will present a compact fission surface power concept to support lunar exploration throughout the lunar night and permanently shadowed regions. The 1-10 kWe “fission battery” will support 24/7 operation of rovers and other equipment.

 

Tuesday, December 6, 2022

POSTER SESSION:  POWER TECHNOLOGIES

4:00 p.m.   Research Support Building (RSB), Bldg. 164

Authors (*Denotes Presenter)

Abstract Title and Summary

Wilson S. W.

Stirling Power Conversion for Lunar Applications [#2005]
NASA is developing Stirling power convertors for use in nuclear power systems that would provide electricity to users on the lunar surface. Development efforts are focused on demonstrating convertor performance and robustness requirements.

Evans L.  Bux S.

Progress on Thermal Energy Conversion Technologies for the Radioisotope Power Systems Program Technology Management Element [#2031]
The NASA Radioisotope Power Systems Program Technology Management Element works to mature research technologies for power generation enabling survival through the lunar night. This briefing introduces the technologies that are under development.

McNatt J. S.

Photovoltic Systems for Lunar Surface Survivability During the Lunar Day and Night [#2049]
This presentation will focus on the work at NASA GRC on low temperature solar cell operation, thermal cycling of solar cell coupons and array components, and lunar solar array designs for long duration lunar surface missions.

Slusser T. B.  Wilcox S. J.  Hernandez Z. Y.

Surviving Night at the Lunar South Pole: Exploring Viability of Radioisotope Power Systems for a Crewed Rover [#2035]
Current lunar spacecraft designs tend to use heavy batteries and solar panels. This paper examines the benefits and limitations of current and near-term radioisotope systems, mainly focusing on trading availability, shielding, mass, and power.

Hecht M. H.  Lubin P.

Lunar Power Anywhere, Anytime [#2036]
Average power comparable to an MMRTG can be delivered to a 2.1-m photovoltaic array on the lunar surface by an orbiter equipped with 6 sq. meters of solar panels, a battery, a 7-kW fiber laser, a 20-cm focusing mirror, and 1 arcsec pointing accuracy.

 

Tuesday, December 6, 2022

POSTER SESSION:  THERMAL AND ILLUMINATION

4:00 p.m.   Research Support Building (RSB), Bldg. 164

Authors (*Denotes Presenter)

Abstract Title and Summary

Byrne S.  Rizk B.  Meyer A. S.  Ward M. G.

C-LIFE — Europan Technology for a Lunar Problem [#2002]
The thermal challenges of the Lunar night share similarities with landed missions to Ocean worlds. C-LIFE is a camera developed in the NASA ICEE-2 and COLDTech programs for Europa Lander and is suitable for Lunar permanent shadows and nights.

Shafirovich E.  Rickman S. L.

A Warm Garage for a Lunar Rover [#2008]
Heat generators based on gasless combustion of highly energetic reactive mixtures could be installed directly in the surface layer of lunar regolith. They would keep thermal energy for days and gradually supply heat to a rover/lander.

Oikawa T.  Stalcup E. J.

Lunar Night Survival Study for CubeRover with Ultra Fast Proximity Charging Station [#2009]
Astrobotic, WiBotic, Bosch, the University of Washington, and the NASA Glenn Research Center are developing a lightweight, ultra-fast charging system for use on the lunar surface, which can enable assets to survive lunar night.

Newman J.  Edmundson P.

A Decade of Lunar Night Survival Strategies and Technologies Developed at Canadensys Aerospace [#2023]
This paper will discuss the path taken by Canadensys Aerospace over the last decade in developing a range of small-mission technologies and strategies for lunar night survival.

Cremons D. R.  Smith D. E.  Sun X.  Mazarico E.  Head J.

Passive Retroreflector Arrays for Polar Navigation in the Dark [#2015]
Illumination conditions at the South Pole present challenges to visual and terrain-based navigation. Passive laser retroreflector arrays placed along traverse routes would act as waypoint markers when illuminated.

Johnsno W. E.

Development of Thermal Control Devices for Extreme Lunar Environments at Marshall Space Flight Center [#2039]
Overview of Marshall Space Flight Center’s work with industry partners to develop and test enabling thermal technologies for extreme environments survival on the Lunar surface.

Vivod S. V.  Deminico M. R.

Polymer Aerogels for Lunar Survivability (PALS) [#2044]
Polymer aerogels; lightweight solids with nano-scale pore size, high internal surface area, and low thermal conductivity have the potential to combat issues found in extreme space environments such as thermal, dust, and radiation mitigation.

 

Tuesday, December 6, 2022

POSTER SESSION:  OTHER TECHNOLOGIES TO ENABLE SURVIVABILITY OR OPERATION

4:00 p.m.   Research Support Building (RSB), Bldg. 164

Authors (*Denotes Presenter)

Abstract Title and Summary

Hunt S. J.  Thangavelu M.

Pangaeus: A Concept for Dealing with Long Lunar Nights [#2029]
Pangaeus is a concept architecture which addresses the need for lunar night survival. It proposes the use of swarm robotics and subsurface burrowing for better thermal regulation.

Tucker J.  Parks W.  Daspit G.  Patterson M. C. L.

Affordable Test Environments for Simulated Lunar Day/Night Cycling [#2034]
A crysogenic test facility is described for materials and component characterization for lunar day/night cycling and further testing of small volumes to 15K.

 

BACK TO TOP

 

Wednesday, December 7, 2022

INTRODUCTION TO CLPS PROVIDERS

8:30 a.m.   Mission Integration Center (MIC) Auditorium, Bldg. 162

Times

Authors (*Presenter)

Abstract Title and Summary

8:30 a.m.

Blue R. *

CLPS Introduction

 

CLPS Providers 

Lightning Presentations

8:40 a.m.

Firefly Aerospace

[PRESENTATION]

9:00 a.m.

Intuitive Machines

 

9:20 a.m.

Lockheed Martin

 

 

Wednesday, December 7, 2022

POWER TECHNOLOGIES FOR CLPS LANDERS

9:45 a.m.   Mission Integration Center (MIC) Auditorium, Bldg. 162

Times

Authors (*Presenter)

Abstract Title and Summary

9:45 a.m.

Button R. *

Power Introduction

9:55 a.m.

Brandon E. J. *  West W. C.  Peterson D.  Hunter M.  Seong H. L.  Pasalic J.  Billings K.  Jones J.-P.  Ruiz J. P.  Guillen F.

New Power Sources for Surviving the Lunar Night [#2011]  [PRESENTATION]
Several approaches to support lunar survival and operations through one or more day/night cycles are under development at the Jet Propulsion Laboratory. These include high specific energy primary and rechargeable batteries, and chemical heat sources.

10:15 a.m.

Shafirovich E. *

Metal Fuels and Chemical Oxygen Generators for Lunar Night Survival [#2007]  [PRESENTATION]
Combustion of lithium and magnesium powders with chemically generated oxygen is evaluated as a source of heat for lunar landers and rovers. In the estimates, a commercially available multi-purpose oxygen generator is used a source of oxygen.

10:35 a.m.

Clark P. E. *  Jensen E.

Beyond Survival: Compact Combined Power and Packaging Solution for Operating During Lunar Night [#2006]
High efficiency thermal components combined with a high efficiency energy storage system currently under development by Blackbox Energy systems enable measurement packages that heretofore required unaffordable dedicated landers with radioisotopes.

10:55 a.m.

 

BREAK

11:05 a.m.

Oeftering R. C. *

Power Hibernation for Low-Cost Solar Powered Lunar Missions [#2013]  [PRESENTATION]
Lunar Power Hibernation enables a solar powered spacecraft to surviving the lunar night and restore the system at lunar dawn. The approach relies on 18650 lithium-ion cell tolerance of cryogenic freezing and ability to recover at normal temperature.

11:25 a.m.

Rolston N. *  Smas S.  Rice J.

Improving Thermomechanical Reliability of Li-Ion Batteries to Withstand Freeze-Thaw Process (Thermal Cycling) [#2016]    [PRESENTATION]
Characterize chemo- and thermomechanical properties of Li-ion batteries and power system components. Design battery architecture and power system to establish safe protocols for cell hibernation cycles with a lightweight form factor.

11:45 a.m.

Sengupta A.  Islam S. *  Zhang E. X.  Witulski A. F.  Ball D. R.  Schrimpf R. D.  Galloway K. F.  Reed R. A.  Alles M. L.  Jacob B.

Operation of Silicon Carbide Power Diodes Under Lunar Night Temperatures [#2032]  [PRESENTATION]
Experimental low temperature responses of silicon carbide power diodes indicate that turn-on voltage of the diodes increase with decreasing temperature and emphasizes the importance of shielding for their operation on Lunar surface.

 

BACK TO TOP

 

Wednesday, December 7, 2022

DAY TWO: LUNCH AND PRESENTATION

12:15 p.m.   Mission Integration Center (MIC) Auditorium, Bldg. 162

Times

Authors (*Presenter)

Abstract Title and Summary

12:15 p.m.

White B.  Toscano W. M. *

SBIR/STTR Technology for Direct Infusion into CLPS  [PRESENTATION]

 

Wednesday, December 7, 2022

THERMAL AND ILLUMINATION

2:15 p.m.   Mission Integration Center (MIC) Auditorium, Bldg. 162

Times

Authors (*Presenter)

Abstract Title and Summary

2:15 p.m.

Jansen S. *

Introduction

2:25 p.m.

Bugby D. C. *  Rivera J. G.

Thermal Innovations for Extended-Duration Lunar Operability and Survivability [#2012]  [PRESENTATION]
Thermal innovations that enable extended-duration lunar operability and survivability are described herein including thermally-switched enclosures, spacerless MLI, DTE-based thermal switches, mini-LHPs, Vectran tension cable supports, and others.

2:55 p.m.

Benna M. *  Schmer N. C.  Sarantos M.  DellaGiustina D.  Bailey S.  Gershman D.  Horányi M.  Szaley J.  Weber R.

The Lunar Environment Monitoring Station (LEMS) [#2022]  [PRESENTATION]
LEMS is a compact, autonomous, and self-sustaining (power, thermal, and communication) instrument suite that enables long-term, in situ monitoring of the lunar geophysical environment for multiple years on the surface of the Moon.

3:15 p.m.

Johnson W. E. *  Schunk R. G.  Daniel K. E.  Farmer J. T.

Hybrid Thermal Control System for Extreme Thermal Environments [#2041]
A hybrid thermal control system has been developed at Marshall Space Flight Center that combines a pumped fluid loop with a loop heat pipe and thermal control valve. Thermal vacuum test results are presented to highlight the benefits of the system.

3:35 p.m.

 

BREAK

3:45 p.m.

Traeden N. W. *  Williams H. J.

Combined Regolith Batteries and Vertical Solar Array Systems for Lunar Night Survival [#2037]  [PRESENTATION]
Use of Honeybee’s LAMPS solar array along with in-situ regolith in a closed pneumatic system for thermal energy storage for lunar night survival.

4:05 p.m.

Slavik J. *  Vazansky T.  Bedford S.

Surviving the Lunar Night with Astrobotic’s NITE System [#2014]  [PRESENTATION]
Astrobotic’s NITE System enables landers, rovers, and other assets to survive the lunar night by providing on-demand heat and power via controlled exothermic reactions. NITE can produce ~1900 Wh/kg and is dust-proof, low mass, and non-radioactive.

4:25 p.m.

Van Velson N. *  Schulze D-P.  Diebold J.  Tarau C.  Anderson W. G.

High Turndown Two-Phase Thermal Switch for Lunar Lander and Rover Thermal Management [#2038]
A bellows-based two-phase thermal switch with high on/off conductance ratio has been developed and demonstrated for lunar lander and rover thermal management.

4:35 p.m.

Ellis M. C. *  Nicolaescu I.  Demydovych M.  Anderson W. G.

Thermal Control Valve Development for System Survival During Low Temperature Sink Conditions [#2048]
Advanced Cooling Technologies, Inc. is developing a thermal control valve that passively controls coolant flow to a radiator. This valve is placed after the pumping mechanism of the coolant loop, such as the evaporator of a loop heat pipe.

4:45 p.m.

Lee K.-L. *  Tarau C.  Anderson W. G.  Huang C.-N.  Kharangate C.  Kamotani Y.

Variable Conductance Heat Pipe with Non-Condensable Gas Flow for Lunar Night Survival [#2047]

 

[PRESENTATION]
Advanced Cooling Technologies, Inc. is developing a new variable conductance heat pipe configuration that involves continuous internal non-condensable flow. This significantly improves the reliability of the device for future space missions.

4:55 p.m.

Woolf D. *

Physical Sciences Inc. [PRESENTATION]

 

BACK TO TOP

 

Thursday, December 8, 2022

LONG-TERM PLANS FOR LUNAR RESEARCH AND LUNAR GEOPHYSICAL NETWORK

8:30 a.m.   Mission Integration Center (MIC) Auditorium, Bldg. 162

Times

Authors (*Presenter)

Abstract Title and Summary

8:30 a.m.

Watkins R. *

Long-Term Plans for Lunar Research and Lunar Geophysical Network  [PRESENTATION]

 

Thursday, December 8, 2022

OTHER TECHNOLOGIES TO ENABLE SURVIVABILITY OR OPERATION

9:30 a.m.   Mission Integration Center (MIC) Auditorium, Bldg. 162

Times

Authors (*Presenter)

Abstract Title and Summary

9:30 a.m.

Sacksteder K. *

Other Survive the Night Technologies

9:40 a.m.

McCormick R. L. *  Newill-Smith D. E.  Kennett A. J.  Dillon R. P.  Fleischner R. E.  Levanas G. C.  Fradet L. J.

Cold Operable Lunar Deployable Arm (COLDArm) and Technologies to Survive and Operate During Lunar Night [#2042]
COLDArm is a robotic arm leveraging cryogenic capable technologies to enable survival and operation throughout the lunar night. Cryogenic capable technologies used include bulk metallic glass actuators, motor controllers, and force torque sensor.

9:55 a.m.

Rickards R. M. *

The Lunar Mobility Vehicle as a Key Enabler in the Cislunar Economy [#2024]  [PRESENTATION]
This abstract is intended show the future capabilities, beyond landers, for payload transportation and survive the night capabilities.

 

Thursday, December 8, 2022

DUST MITIGATION

10:15 a.m.   Mission Integration Center (MIC) Auditorium, Bldg. 162

Times

Authors (*Presenter)

Abstract Title and Summary

10:15 a.m.

John K. *

Dust Mitigation Technology to Enable Survive the Night Capabilities [#2045]  [PRESENTATION]

10:45 a.m.

 

BREAK

 

Thursday, December 8, 2022

VISIONS INTO THE FUTURE

11:00 a.m.   Mission Integration Center (MIC) Auditorium, Bldg. 162

Times

Authors (*Presenter)

Abstract Title and Summary

11:00 a.m.

Munk M. *

Space Technology Visions for Tech Maturation and Commercialization  [PRESENTATION]

 

BACK TO TOP

 

Thursday, December 8, 2022

DAY THREE: LUNCH AND PRESENTATION

12:00 p.m.   Mission Integration Center (MIC) Auditorium, Bldg. 162

Times

Authors (*Presenter)

Abstract Title and Summary

12:00 p.m.

Sipila S. *

EVA and Human Surface Mobility Program Future Needs  [PRESENTATION]

 

Thursday, December 8, 2022

CLOSING REMARKS AND TOUR LOGISTICS

1:00 p.m.   Mission Integration Center (MIC) Auditorium, Bldg. 162

Times

Authors (*Presenter)

Abstract Title and Summary

1:00 p.m.

Kearns J.  Munk M. *

Closing Remarks

 

Thursday, December 8, 2022

TOURS AND NETWORKING

1:20 p.m.

Times

Authors (*Presenter)

Abstract Title and Summary

1:20 p.m.

 

Networking Breakout Rooms

1:20 p.m.

 

Tour A: Armstrong Test Facility (Sandusky)

1:20 p.m.

 

Tour B: Slope Lab and Vacuum Facilities (Glenn)

 

BACK TO TOP