Preservation of organic compounds in circumneutral iron deposits

Niki Parenteau, Linda Jahnke, Sherry Cady, Tom Bristow, Sandra Siljeström, Sanjoy Som, David Des Marais, Jack Farmer

Overview

- 1. Iron deposits on Mars
 - a) Acidic
 - b) Circumneutral
 - Partial Fe(II) oxidation, redox cycling
- 2. Circumneutral iron deposits on Earth
 - a) Microbial populations
 - b) Production and preservation of lipids
 - c) GC-MS, ToF-SIMS
 - d) Taphonomy
 - Factors that control early diagenesis
- 3. Implications for microbial biosignatures on Mars

Acidic iron deposits on Mars

- Opportunity Meridiani Planum (Grotzinger et al., 2005; McLennan et al., 2005)
- Oxidation of upwelling circumneutral Fe(II) groundwater from a basaltic aquifer (Hurowitz et al., 2010; Andrews-Hanna et al., 2007)

$$Fe(II)_{(aq)} + H_2O + hv = Fe(III)_{(aq)} + OH^- + 0.5 H_2$$
(1)

$$Fe(II)_{(aq)} + 0.25 O_{2(aq)} + H^{+} = Fe(III)_{(aq)} + 0.5H_2O$$
(2)

$$0.5 H_2 O + hv = 0.25 O_2 + H^+ + e^-$$
(2a)

$$H_2O + e^- = OH^- + 0.5 H_2$$
 (2b)

 $Fe(III)_{(aq)} + 0.125 SO_4^{2-} + 1.75 H_2O = FeO(OH)_{0.75}(SO_4)_{0.125} + 2.75 H^+$ (3)

Circumneutral settings on Mars

igodol

- **Curiosity** (Grotzinger et al., 2014; Vaniman et al. 2014; Bristow et al., 2015; Treiman et al., 2015)
- Smaller degree of Fe(II) oxidation = less acidity
 - Oxidation of Fe(II) in olivine to Fe(III) in magnetite and perhaps smectites
 - a) Circumneutral pH and low salinity

American Mineralogist, Volume 100, pages 824-836, 2015

The origin and implications of clay minerals from Yellowknife Bay, Gale crater, Mars† f

THOMAS F. BRISTOW^{1,*}, DAVID L. BISH², DAVID T. VANIMAN³, RICHARD V. MORRIS⁴, DAVID F. BLAKE¹,
 JOHN P. GROTZINGER⁵, ELIZABETH B. RAMPE⁴, JOY A. CRISP⁶, CHERIE N. ACHILLES², DOUG W. MING⁴,
 BETHANY L. EHLMANN^{5,6}, PENELOPE L. KING^{7,8}, JOHN C. BRIDGES⁹, JENNIFER L. EIGENBRODE¹⁰,
 DAWN Y. SUMNER¹¹, STEVE J. CHIPERA¹², JOHN MICHAEL MOOROKIAN⁶, ALLAN H. TREIMAN¹³,
 SHAUNNA M. MORRISON¹⁴, ROBERT T. DOWNS¹⁴, JACK D. FARMER¹⁵, DAVID DES MARAIS¹,
 PHILIPPE SARRAZIN¹⁶, MELISSA M. FLOYD¹⁰, MICHAEL A. MISCHNA⁶ AND AMY C. MCADAM¹⁰

Curiosity's Extended Mission will explore Mt. Sharp, with an emphasis on understanding the subset of habitable environments that preserve organic carbon

46.6°C, pH 6.9, 2.1 mg/L Fe²⁺

45.1°C, pH 7.2, 1 5 mg/L Fe²⁺, 5.9

43.3°C, pH 7 7, 0 6 mg/L Fe

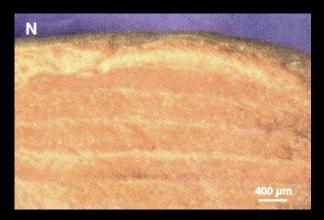
Surface expression of Fe(II)-rich groundwater from rhyolite/basalt aquifer

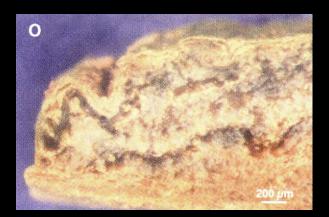
Microbial mats

Synechococcus-Chloroflexus 50-54°C

0cm

Pseudanabaena 50-54ºC

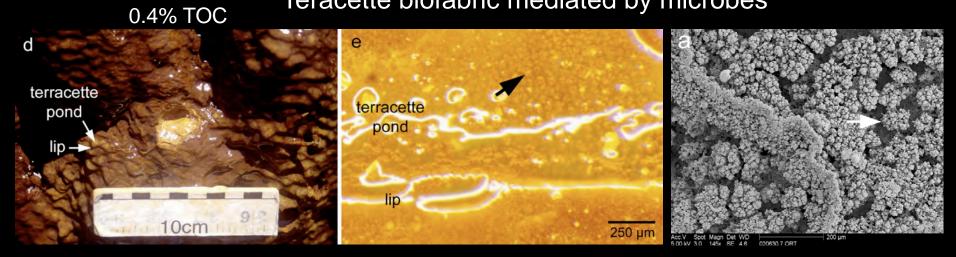

Narrow Oscillatoria 36-45°C

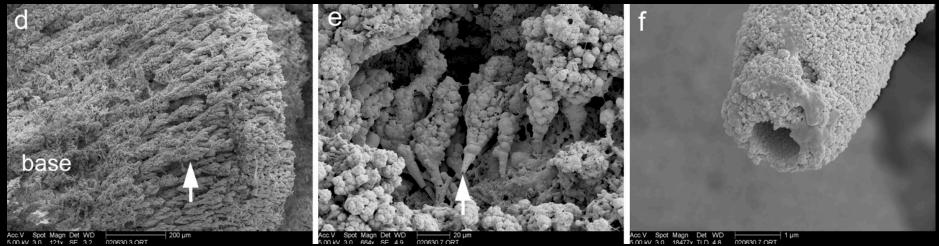


Neutralphilic Chemolithoautotrophs ~25°C

Oscillatoria princeps 36-45°C

Microbial biosignatures

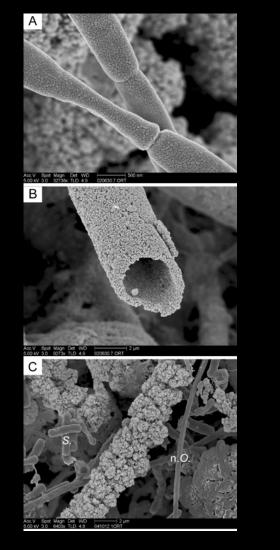


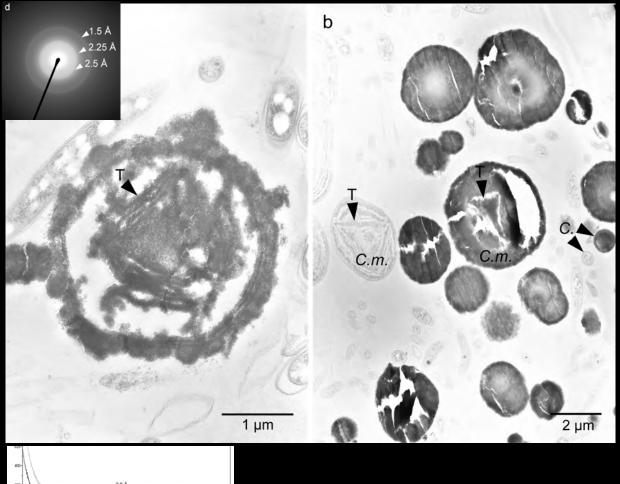


- 1. Biofabrics, microfossils
 - a) OM, SEM, TEM, EDS, ED, XRD
- 2. Lipids (including lipid biomarkers)
 - 1. GC-MS (extraction)
 - 2. ToF-SIMS (in situ)
 - 3. Quantitative analysis of survival of organics in Fe-rich system

Biofabrics (poss. visible by camera)

Teracette biofabric mediated by microbes



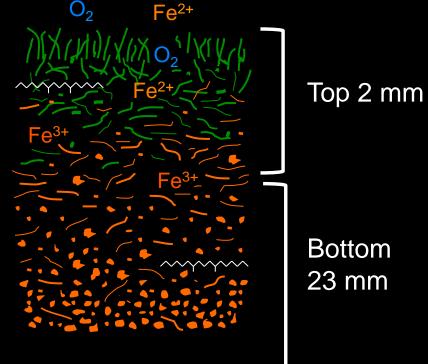

Parenteau and Cady, 2010

Microfossils

Encrustation

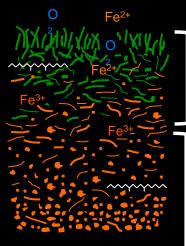
Fe permineralization

Parenteau and Cady, 2010


Lipids and lipid biomarkers

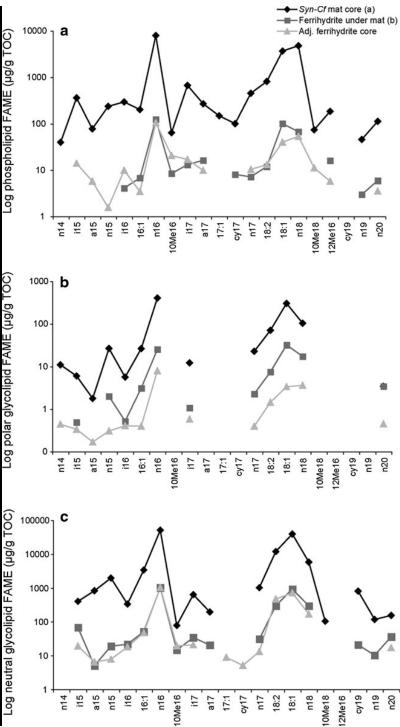
Production and preservation of lipids in *Synechococcus*-Chloroflexi mat

- early diagenesis
- quantitative analysis of survival of organics



Labile lipids

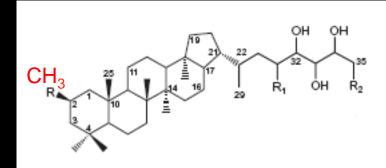
- taxonomic information

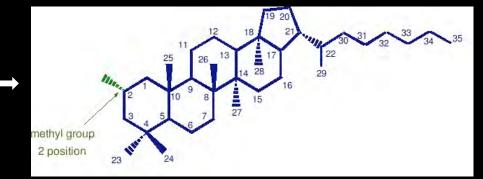

- not good biomarkers Phospholipids

Mat and Fh under mat

CONTROL: Fh core with no mat on surface Fe² Polar glycolipids

Neutral glycolipids

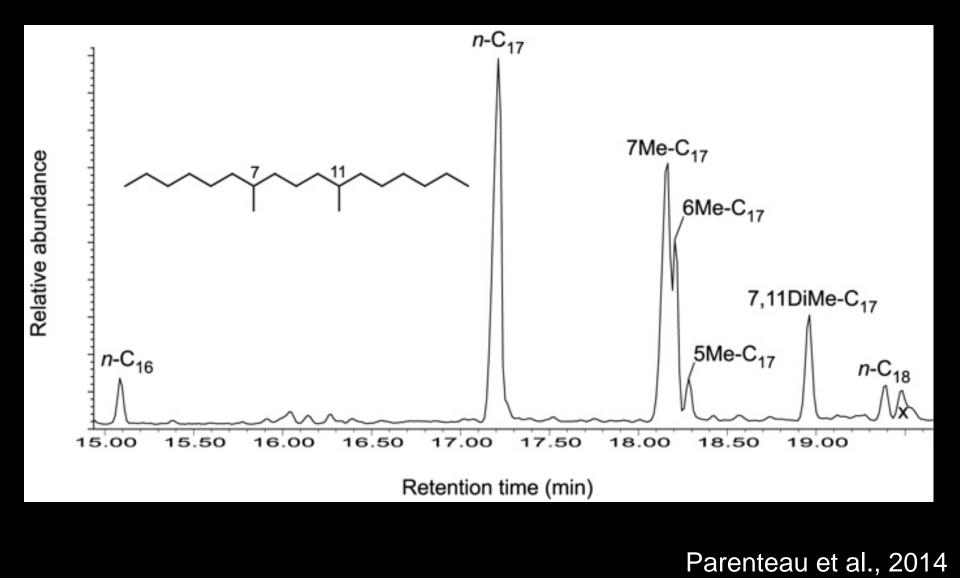



Lipid biomarkers (geolipids)

taxonomic information (e.g., Summons et al., 1999)
physiological function in cell (e.g., Rashby et al., 2007)

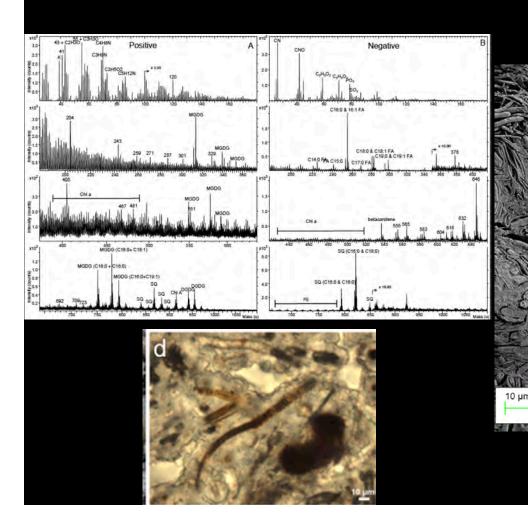
2-Methylbacteriohopanepolyol

2-Methylhopane



Lipid biomarker	Syn-Cf mat core (a)	Ferrihydrite beneath mat (b)	Adjacent ferrihydrite core	<u>Pseud</u> - anabaena mat	O. princeps mat	Narrow Oscillatoria mat channel	Narrow Oscillatoria mat terrace
Hopanepolyol products	1.42	1					
2-MeC ₃₁	0.02	-			1	- (- 0 -	10.90
C ₃₁	0.21	0.01	· · · · · · · · · · · · · · · · · · ·	26.50			7.98
2-MeC ₃₂	0.02	1	1	-			in the second
C ₃₂	1.68	0.01	0.08	974.91	19 - 19 4	0.03	105.51

Abbreviations: Syn-Cf., Synechococcus-Chloroflexi mat; O. princeps, Oscillatoria princeps; -, not detected.


Lipid biomarkers (geolipids)

Mid-chain branched mono- and dimethylalkanes

ToF-SIMS lipid database

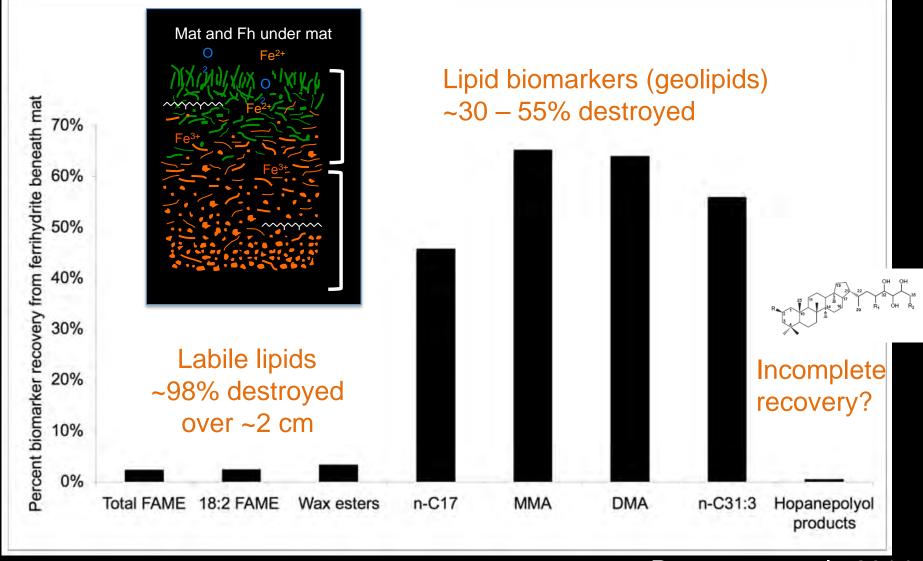
Sandra Siljeström SP Technical Research Institute of Sweden ExoMars MOMA LDI-MS

Can assign lipids to morphotypes Sulphoquinovosyldiacylglycerol (SQ)

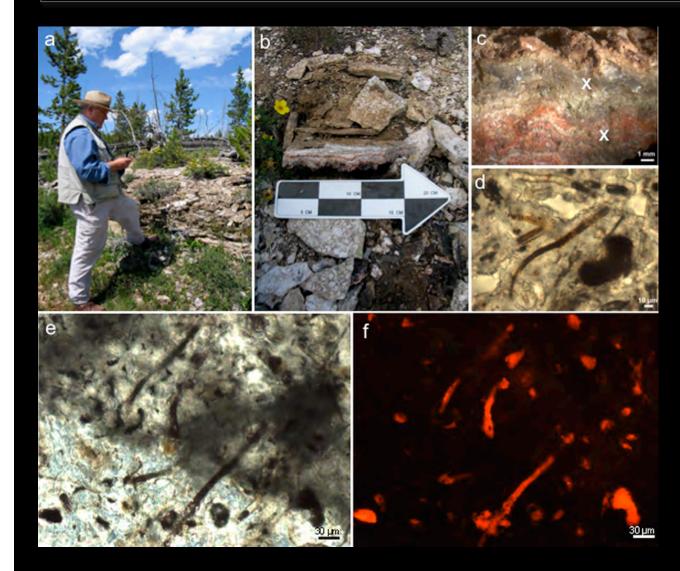
Signal A = SE2

312 K X

Date :23 Aug 2012

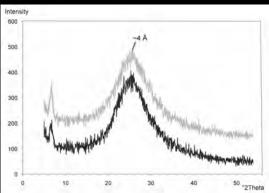

Time

Siljeström et al., in prep.

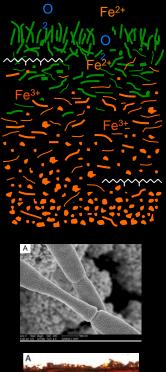

16:44:44

EHT = 2.00 kV

Early diagenesis in mats and ferrihydrite



Later diagenesis in extinct Fe-Si deposits


Younger than 600,000 yr opal-A

Artist Point sinter opal-A 130,000 – 600,000 yr

Enhanced preservation in Fe-Si systems

Mat and Fh under mat

- 1. Extant mats
 - a) 99.9% of organic matter destroyed
 - photoheterotrophy, aerobic respiration, anaerobic respiration, fermentation, methanogensis
 - Fe(II) consumes O₂ and depresses aerobic respiration
 - Fe encrustation protects from enzymatic attack, also inhibits enzymatic activity
 - Fe oxidizes organics?
 - Silica blocks surface Fe sites in ferrihydrite
- 2. Extinct Fe-Si sinter deposits
 - a) Recrystallization, pore-filling, later stage redox fluids

Implications for Mars

- 1. Biomass production in circumneutral Fe deposits
 - a) TOC 1 29%
 - b) Remember that (slightly) acidic settings are stressful
- 2. Rate of destruction
 - a) Fe(II) depresses aerobic respiration by consuming O_2
 - b) Rapid mineralization—Fe³⁺ electrostatic interaction with negatively charged cell surfaces
 - c) Silica protects organics from Fe oxidation
- Relevant to study modern settings due to lack of diagenetic alteration at Home Plate
- 4. Homework: Duration of hydrothermal settings
- 5. Didn't address: ID of mineral assemblages from orbit, Mars 2020 instrumentation, destruction by radiation (although Fe shields UV)

Acknowledgments

- NASA Postdoctoral Program
- NASA Exobiology grant
- NAI Ames Team
- Yellowstone National Park
- Sherry Cady
- Linda Jahnke
- Dave Des Marais
- Jack Farmer
- Bev Pierson
- Tom Bristow, Sandra Siljeström, Sanjoy Som