THE FREQUENCY OF PUTATIVE FALBACK PARTICLES ATOP BENNU'S FIELDS OF BRECCIATED BOULDERS. B. Rizk1, M. Pajola2, K.J. Walsh3, E.B. Bierhaus4, D.N. DellaGiustina1, C. Y. Drouet d'Aubigny1, D.R. Golish1, E.R. Jawin5, M. Delbo6, R.-L. Ballouz1, J.L. Molaro1, C.A. Bennett1, K.N. Burke1, P. Michel6, L. Lim8, J.P. Dworkin8, H. Campins9, H.C. Connolly, Jr.10,1, T.J. McCoy5, M.G. Daly11, M.C. Nolan1, D.S. Lauretta1, 1Lunar and Planetary Laboratory, 1415 N. Sixth Ave., University of Arizona, Tucson, AZ, USA 85705, (bashar@LPL.arizona.edu), 2INAF-Astronomical Observatory of Padova, Vic. Osservatorio 5, 35122 Padova, Italy, 3Southwest Research Institute, Boulder, CO, USA, 4Lockheed-Martin Space Systems, Littleton, CO, USA, 5Smithsonian Institution, National Museum of Natural History, Washington, DC, USA, 6Observatoire de la Côte d’Azur, Nice, France, 7Planetary Science Institute, Tucson, AZ, USA, 8NASA Goddard Space Flight Center, Greenbelt, MD, USA, 9University of Central Florida, Orlando, FL, US, 10Department of Geology, Rowan University, Glassboro, NJ, USA, 11York University, Toronto, Canada

Introduction: Cobble and pebbles perched on boulder surfaces that exhibit orientations and albedos divergent from the underlying boulder’s texture and brightness is a novel feature of Bennu’s boulder diversity. This phenomenon, dubbed ‘rocks-on-rocks’ by the mission team, has been recorded by the OSIRIS-REx Camera Suite (OCAMS) PolyCam and MapCam imagers since high-resolution imaging began in early 2019 [1][2][3][4]. Here, we interpret their origin as either (a) inclusions revealed by weathering or (b) externally sourced material that has landed on the boulder surface as particulate fallback. Bennu’s surface geology supports both possibilities (Figure 1, A and B). The two phenomena may be related if ejection of particles from one boulder provides the source material for another boulder’s fallback. The latter interpretation is recently motivated after particles ejected from Bennu’s surface were observed to fall back to the asteroid’s surface [5]. Here, we report a preliminary census and salient observations about putative fallback particles relative to exhumed inclusions with a goal of constraining both particle ejection and exhumation mechanisms.

Classification: Based on our counts, roughly two-thirds of boulders on Bennu are dark, brecciated, seemingly friable, and host inclusions. Many of these boulders are strongly weathered and exhibit clast shedding at various stages of completion (Figure 2, A-H). The texture of these cauliflower-like boulders appears to amalgamate brighter, angular, harder clasts within a darker, softer matrix. A set of several thousand high-resolution images—gathered mostly during the Orbital A and Orbital B global campaigns—has captured this process at various stages of its life cycle. Paradoxically, such extensive fragmentation makes it challenging to positively identify potential fallback particles.

We employed 8 criteria, [6], that analyzed weathering, reflectance, shadowing, alignment, morphology, discoloration, clustering and proliferation in order to...
divide candidate fallback and inclusions into either category. We estimated that in a sampling of almost 5000 meter-to-several meter–sized boulders some 5%, or almost 250 boulders, host pebbles and cobbles that could be classified as fallback particles. The rest—or 95%—host evident inclusions, i.e., clasts that began life embedded within the underlying boulder matrix and are now mechanically separated.

![Figure 2: High-resolution high-phase-angle PolyCam images displayed in order of decreasing exhumation, clast shedding and textural weathering CCW starting from upper left. Image information [name, phase angle, scale (cm/pix), lon, lat & CW angle to North direction (°)]: A) 20190711T092848S026_pol, 90.6, 0.9, 221, -82, 278, B) 20190718T081041S737_pol, 90.7, 0.9, 108, 69, 83, C) 20190802T095005S980_pol, 84, 0.9, 212, 23, 269, D) 20190227T060627S854_pol, 93, 1.9, 257, -24, 92, E) 20190713T101830S351_pol, 88, 0.9, 258, -40, 87, F) 20190225T200127S887_pol, 92, 2.4, 120, 52, 286, G) 20190715T002243S946_pol, 91, 1.0, 130, -46, 271, H) 20190711T124030S145_pol, 88, 0.9, 122, -47, 85.

An Active Asteroid: One of the most exciting discoveries at Bennu, in its status as both a carbonaceous and a microgravity body, has been its evidently still active geology [5]. Several physical mechanisms seem plausible enough to be considered as capable of ejecting particles from Bennu’s surface: micrometeoroid impacts, thermal cracking and abrupt pressure release from phyllosilicate dehydration ([7][8][9][10][11]). Images of evident micrometeoroid impacts are recorded in smooth boulder faces all over Bennu [7]. Images of cracking, both linear and network-like, abound [8]. And many of the darker boulders show pits that match the shape of nearby cobbles and grains that may have started out as clasts within these same boulders. These observed morphologies support the above mechanisms—micrometeoroid impact, thermal cracking and abrupt bound-water-driven release—respectively. The signature of electrostatic lofting has not been observed, despite searches during the Detailed Survey Equatorial Station campaigns of May 2-3 & 30, 2019, but the observation is a difficult one, and there is yet no observational reason to discount this mechanism.

In addition, all of these mechanisms may act in concert. For example, thermal stress may prepare a boulder to explosively release its clasts when struck by a micrometeoroid or may lower the pressure required to abruptly decompose a boulder [5]. Decomposing boulders could be more likely to retain fallback particles because their pitted, cracked surface provides more mechanical purchase for the particles to cling. In addition, the presence of externally-sourced clusters of particles may indicate that the process of impact (or ejection) fragments the external particles.

We hope to provide support for one or more of these, or any other, mechanisms in the observations of the morphologies of the putative fallback particles.


Acknowledgments: This material is based upon work supported by NASA under Contracts NNM10AA11C and NNG12FD66C issued through the New Frontiers Program. Maurizio Pajola was supported for this research by the Italian Space Agency (ASI) under the ASI-INAF agreement no. 2017-37-H.0. Marco Delbo acknowledges support from the Centre National d’Études Spatiales, as well as the Academies of Excellence on Complex Systems and Space, Environment, Risk and Resilience of the Initiative d’EXcellence ‘Joint, Excellent, and Dynamic Initiative’ (IDEX JEDI) of the Université Côte d’Azur. We are grateful to the entire OSIRIS-REx Team for making the encounter with Bennu, and the acquisition of this unique data set, possible.