

- Pravec et al (2014) $\xrightarrow{\text { lightcurve }}$ Shape of Apophis with 2024 triangular facets defined by 1014 vertices \rightarrow 3D Asteroid Catalogue.
- Comparing with the observation (Muller et al., 2014) $\rightarrow \mathrm{A}$ correction coefficient of 0.285 must be applyed to the shape.

$$
\mathrm{P}_{\mathrm{E}}+\mathrm{P}_{\mathrm{M}}+\nu \mathcal{A}\left(\mathrm{P}_{\mathrm{R}}\right)
$$

- Mirtich $(1996) \rightarrow$ The shape is perfectly oriented along the principal axes of inertia.
- Apophis is considered as a sum of 2024 points (Venditti 2013 (2014); Chanut et al (2015a); Aljbaae et al (2016)).
- The gravitational potential \rightarrow in good agreement with Tsoulis and Petrovic (2014) and Chanut et al (2015a).
- Advantage: very fast model with high accuracy.

- In the body-fixed reference, The motion close to Apophis:

$$
\ddot{\mathrm{r}}_{j}=-2 \Omega \times \dot{\mathrm{r}}_{j}-\Omega \times\left(\Omega \times \mathrm{r}_{j}\right)+U_{\mathrm{r}_{j}}+\mathcal{A}(\mathcal{P})+
$$

- The mechanical energy of orbits around our target

$$
\begin{aligned}
& H=\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)-\frac{1}{2} \omega^{2}\left(x^{2}+y^{2}\right)-U \\
& U=+\sum_{i=1}^{2024} \frac{\mathcal{G} m_{i}}{r_{i}}
\end{aligned}
$$

- The perturbation on the acceleration of a spacecraft close to (99942) Apophis

- Beutler (2005) \rightarrow SRP model

$$
\mathrm{P}_{\mathrm{R}}=(1+\eta) \mathrm{au}^{2} \frac{A}{m} \frac{S}{c} \frac{\mathrm{r}_{\mathrm{s}}-\mathrm{r}_{\odot}}{\mathrm{r}_{\mathrm{S}}-\left.\mathrm{r}_{\mathcal{\odot}}\right|^{3}}
$$

We considered the case of an OSIRIS-REx-like spacecraft with low area-to-mass ratio (~ 0.017) and reflectance of 0.4

- Shadowing phenomenon

- Frequency analysis of the x, y, and z -coordinate of the orbit. - Removed the quadratic variation of the form: $\alpha+\beta t+\gamma t^{2}$. $-($ FFT $) \xrightarrow{\text { TRIP }}$ determine the leading frequencies. - Nonlinear regression approach \rightarrow model the signal (Fourier-type and Poisson-type):
$x(t)=\sum_{i=1}^{N}\left[A_{i} \sin \left(f_{i} t\right)+B_{i} \cos \left(f_{i} t\right)+C_{i} t \sin \left(f_{i} t\right)+D_{i} t \cos \left(f_{i} t\right)\right]$

- Variation of the Orbital parameters (right) and the control components of the orbit (left)
- Type of orbits for 60 days (left column) and 40 days (right column). \rightarrow Majority of orbits collide or escape at the time of the close approach with Earth.
- Results for 40 days $\xrightarrow{\triangle a}$ identify suitable regions for a spacecraft on March 1, 2029,

- Minimum value of $\triangle a$ is 50 m Corresponding $\triangle e$ is $0.128 \rightarrow$ Non-negligible variation

