An Experimental Assessment on the Effects of Variations in Sulfate Concentrations on Sulfate Reducing Bacteria in Simulated Martian Conditions

M. M. W. Silver¹, S. Mora¹, M. D. Ivey¹, and V. F. Chevrier³
¹: The Arkansas Center for Space and Planetary Sciences. The University of Arkansas, Fayetteville, AR.
²: The University of Arkansas Department of Biological Sciences. The University of Arkansas, Fayetteville, AR.

Introduction

Significant sulfate mineral deposits have been identified on the Martian surface, including ferric sulfates, Ca sulfates, and Mg-sulfates [1-7]. Liquid water in the form of brines may form and remain stable on the Martian surface or in the shallow subsurface for extended lengths of time [3; 8-11]. According to the second Mars Exploration Program Analysis Group (MEPAG) Special Regions Analysis Group (SR-SAG2) these sulfate brines on the Martian surface or shallow subsurface need to be investigated further as possible “special regions”: regions where terrestrial organisms are likely to replicate and/or regions that have a high potential for the existence of extant Martian life forms [12]. For these reasons, the replication capabilities of sulfate reducing bacteria (SRB), which utilize sulfates as metabolic energy sinks (SO₄²⁻) as terminal electron acceptor were investigated under various sulfate concentrations. Future work will investigate SRB responses to sulfate concentrations under Martian surface and subsurface conditions.

Methods

Three organisms from DSMZ:
1. Desulfotalea psychrophila – anaerobic, sulfate reducer, psychrophilic
2. Desulfotomaculum arcticum – anaerobic, sulfate reducer, spore former
3. Desulfuromonas ferrireducens – anaerobic, iron reducer, psychrophilic

Culture Solutions

<table>
<thead>
<tr>
<th>DSMZ Optimal Media</th>
<th>+10% Fe³⁺(SO₄)₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0.1% CaSO₄</td>
<td></td>
</tr>
<tr>
<td>+10% MgSO₄</td>
<td>+20% Fe³⁺(SO₄)₃</td>
</tr>
<tr>
<td>+18% MgSO₄</td>
<td>+30% Fe³⁺(SO₄)₃</td>
</tr>
<tr>
<td>+10% Fe²⁺SO₄</td>
<td>+40% Fe³⁺(SO₄)₃</td>
</tr>
<tr>
<td>+14% Fe²⁺SO₄</td>
<td>+48% Fe³⁺(SO₄)₃</td>
</tr>
</tbody>
</table>

Procedure:
1. Incubated minimum 6 months at optimal temperature
2. Analysis in varied combinations:
 i. DNA purification (MoBiO Kits)
 ii. Polymerase Chain Reaction (PCR)
 a. Generic bacterial primers (16sr1 + 27F)
 b. Sulfate-reducer specific primers (DsrAF5 + Dsr1m-RC, & DsrAF5 + DsrAF4-RC)
 a. Agar gel electrophoresis
 3. Phase contrast and gram staining microscopy

Results

Agar gels:
• Inconsistent gel banding (Figure 2).
• Some DNA banding, though rare
Qubit fluorometry – miniscule DNA (<25 μg/mL) yields common
Sulfide precipitation
• Evidence for biotic sulfate reduction (Figure 3) [15]
Microscopy
• Unsuccessful gram staining – rare incorporation of stain
• Brownian motion observed in some samples
• Possible D. arcticum spores observed (Figure 4)

Discussion

Likely little or no culture growth. Possible explanations:
• DSMZ optimal media insufficient
• DSMZ initial cultures insufficient
 – Supported by no significant turbidity upon delivery
 – Inadequate DNA quantity
 – Supported by fluorometry

Future Work

Different media as suggested by:
• Postgate (1985)
• Bernardae and Lima (2015)
• XRD, FTIR, and SEM
• Additional organisms (E. coli, psychrophiles, mesophiles etc.)
• Martian atmosphere (Figure 5)
 – 6 mbar CO₂
 – Temperatures down to 213 K

Figure 2 (Above). Agar gel wells loaded left to right: optimal media cultures of D. psychrophila, D. ferrireducens, and D. arcticum. Primers employed: Left: DsrAF5 + Dsr1m-RC; Right: 16sr1 +27F. A: Gel ran February 10, 2017. B: Gel ran February 12, 2017.

Figure 3 (Above). D. arcticum +10% Fe²⁺SO₄ (A) and +14% Fe²⁺SO₄ (B) cultures after 9 months of incubation. Black precipitate was not present at inoculation.

Figure 4: Phase contrast microscopy image of possible D. arcticum spores at 1000x magnification. Arrows indicate objects interpreted to be spores, observed in both MgSO₄ cultures (10% and 18%) and the 10% Fe²⁺SO₄ culture.

Figure 5: The Pegasus Astrobiology Chamber at the Arkansas Center for Space and Planetary Sciences, the University of Arkansas.

Acknowledgments

1. This research was supported through NASA Contract: APA556P08G
2. Dr. Timothy Krul and Rebecca Milord for use of their lab space and anoxic chamber

References