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Introduction:  Raman spectroscopy can provide 

chemical information about a sample quickly and non-
destructively with little to no sample preparation, mak-
ing it an ideal instrument for Mars rover missions. The 
ESA ExoMars planetary mission scheduled for launch 
in 2018 will contain a miniaturized Raman spectrome-
ter as part of the Pasteur payload, and NASA has se-
lected two different Raman spectrometers for the 2020 
rover mission. We used a field Raman spectrometer 
similar to those developed for the rovers to analyze the 
mineralogy and biosignatures of Mars analog sites, 
allowing a determination of the types of data that can 
be collected as well as the potential problems of this 
approach. Our preliminary research indicates collect-
ing Raman spectra on Mars may not be as straight for-
ward as previously assumed, and further instrumental 
modifications may be needed. 

Raman Spectroscopy on Mars: Gypsum minerals 
have been characterized with Raman spectroscopy in 
an attempt to better understand the types of data that 
could be collected by a rover on Mars. However, these 
tests were all performed on pure gypsum free of trace 
metal contaminants [1-8]. None of these tests actually 
provide a good proxy for conditions on Mars, where 
surficial minerals are coated in iron oxide dust [9] and 
sulfate minerals are likely to be enriched in trace met-
als like chromium, which has been found in high con-
centrations on Mars [10-12].  

As chromium is a strong autofluorescent emitter 
[13], even trace quantities of chromium can produce 
spectra where the signal to noise ratio is too high to 
obtain any usable data. Gypsum is known to incorpo-
rate chromium ions as it crystallizes [14]. Curiosity has 
measured chromium concentrations as high as 5200 
ppm at Gale Crater, with an average concentration of 
2984 ppm [15].  

SHERLOC, the Raman spectrometer selected to fly 
on the 2020 Mars mission, will use a deep UV laser 
excitation source, ostensibly to avoid the issue of fluo-
rescence interference [16-17]. However, chromium 
oxides are also known to undergo resonant Raman 
enhancement when excited with deep UV wavelength 
excitation [18]. Resonance Raman enhancement occurs 
when the incident laser frequency (here, 248.6 nm), is 
close to the electronic transition of the molecule being 
studied (here, 244 nm). This resonance leads to a great-
ly enhanced intensity of the Raman bands, meaning 
that trace quantities of the resonantly enhanced materi-
al can swamp out the bands produced by other com-
pounds, including any potential biosignatures, like 

carotenoids, which do not undergo resonance en-
hancement in the deep UV [19].  

  Mars Analog: To further explore these potential 
issues, we have identified two Mars-analog field sites 
in northern Oklahoma: One consists of a 250-million-
year-old sequence of high-chromium semi-arid aeolian 
(wind-deposited) terrestrial sediments with abundant 
ancient soils interspersed with evaporative gypsum, 
limestone, and mudstone beds interpreted to represent 
ephemeral acidic and saline lakes; the other is a mod-
ern continental evaporative lake formed by the interac-
tion of groundwater and the evaporate-rich sequence 
described above [20]. Both sites have similar mineral-
ogy, sedimentology, and trace element composition to 
observed Martian environments. Our prelimary data 
from these sites reveal that it is possible to detect pre-
served biomarkers in these localities, but not with the 
instrumental parameters currently selected to go to 
Mars for the ExoMars mission. 
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