Introduction:
Orchestration of genetic inter-communication between organellar (mitochondria & chloroplasts) and nucleic genomes is a complex mechanism in nature. Gene transfer phenomena are generally accepted as DNA-directed but experimental evidence is provided for RNA modularity in such a control, too. In this contribution, an uprising hypothesis concerning non-coding RNAs' partitioning in the evolution of photosynthetic organisms, via energy transduction and redox signalling will be discussed.

More specifically, we will try to unravel functional aspects of the RNA biochemistry concerning possible involvement of autonomous riboswitch-like molecules in the redox organismal fitness and (plant) cell bioenergetics, based on current data. Furthermore, we envision that commonalities regarding non-coding RNAs studies in photosynthetic extremophiles of primordial life; archean endosymbionts from hydrothermal vents and Antarctica, can decipher the context of RNA-mediated cell evolution, under a molecular eco-evolutionary umbrella.

References:

Additional Information:
abstract submission for an oral presentation.

NASA
2015 Astrobiology Science Conference (AbSciCon)
June 2015. Chicago, USA
-Habitability, Habitable Worlds, and Life
Theme: Sustained Habitability on a Dynamic Early Earth.
Session Title: Phototrophic Life and Earth’s Redox Evolution.
Topic Short Title (listed on abstract submission form): Phototrophic Life and Earth’s Redox Evolution.
Organizer: Trinity Hamilton (University of Cincinnati), e-mail: trinity.hamilton@uc.edu