
RNA editing has evolved multiple times independently, and some have suggested that it may have been a feature of early low fidelity biological systems. 
Covello and Gray1 proposed a 3-step model for the evolution of RNA editing. However, this model has yet to be tested experimentally. In this model, RNA 
editing activity pre-exists but there is no substrate for it to act upon. Subsequently, mutation creates editable nucleotide sites, which may be fixed by genetic 
drift. RNA editing is now required for function, and thus becomes indispensable for gene expression. We sought to test this model by asking whether 
slippage-type editing can evolve under lab conditions favoring genetic drift. Our previous work on Buchnera, an endosymbiont of aphids, showed that RNA 
polymerase slips upon encountering poly(A/T) tracts, leading to stochastic incorporation or removal of As or Us in the nascent messenger RNA. This 
results in a heterogeneous population of mRNAs2. Slippage-type editing can restore the open reading frame at the mRNA level where frameshift mutations 
have been acquired at the DNA level. This in turn leads to the expression of functional proteins but may also reduce expression efficiency of in-frame 
genes2. To establish whether slippage-type editing emerges under conditions of genetic drift, we propagated 10 E. coli lines through daily single-cell 
bottlenecks. After 50 days, one line showed a decrease in growth rate and genome sequencing revealed the emergence of 38 frameshift mutations that, 
appear as pseudogenes. To our knowledge, this is the first demonstration of the emergence of RNA editing process under laboratory conditions. Our results 
are consistent with the constructive neutral evolution model of Covello & Gray. Furthermore, our results indicate that under conditions favouring genetic 
drift, editing may readily emerge. This in turn suggests that RNA editing could well have been a feature of early biological systems.  
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•  One of the 10 independent lines subjected to continual bottlenecking 
showed a severe decrease in fitness 

•  A decrease in fitness is one of the effects of Muller’s ratchet; an 
irreversible process of the accumulation of slightly deleterious 
mutations3 

•  Slippage-prone poly(A) tracts were inserted into the GFP gene at a 
point corresponding to a loop in the protein 

•  The levels of relative fluorescence unit (RFU) were measured across a 
time frame of 24 hours 

Ten independent E. coli lines bearing a mutD5 mutator allele were 
subjected to daily single-cell bottlenecks  
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Does slippage-type editing evolve under lab conditions favoring genetic 
drift?  
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•  Increase in number of SNPs and poly (A/T) tracts in the bottlenecked 
population 

Using a GFP Reporter to Quantify the Effect of Slippage on 
Protein Synthesis 
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•  Reduction in the levels of GFP fluorescence in the constructs carrying 
slippage-prone poly(A) tracts 

Whole Genome Sequencing 

•  Emergence of frameshifted poly(A/T) tracts was observed in one of 
the ten lines after 50 days of bottlenecking, as indicated above by the 
vertical red lines relative to position in REL606 genome 

1.  Emergence of slippage-type editing  
machinery  

2.  Mutation at the editable site and 
fixation by genetic drift 

3.  Slippage-type editing is indispensible 
and maintained by selection 
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Whole genome sequencing (Illumina’s HiSeq) was carried out at 10-day 
intervals for a single lineage that showed a marked decrease in growth 
rate 
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Conclusions 

•  Emergence of slippage-type editing is consistent with Covello and 
Gray’s model for the origin of RNA editing1  

•  Preliminary results show that frameshifted poly(A/T) tracts require 
slippage-type editing to produce full length proteins (in progress) 

•  GFP expression is reduced, but is not completely eliminated 
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