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Figure 2: Detected Planets Based on Titius-Bode Relation Predictions
Exoplanet systems where an additional candidate was detected after a TB relation prediction was made.  Previ-
ously known planets are shown as blue circles. The predictions of Bovaird and Lineweaver (2013) and their 
uncertainties are shown by the red �lled rectangles if the transit probability is high, or by red hatched rectan-
gles otherwise. The new candidate planets are shown as green squares. The critical semi-major axis, beyond 
which the probability for a planet to transit is < 0.5, is shown by a solid black arc. 
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Figure 4: Extrapolating Predictions to Estimate the Number of Habitable Zone Planets Per Star
The e�ective temperatures of planets within the 31 systems from our sample which extend out to the 
green habitable zone (HZ) after our planet predictions are made. For the purpose of estimating the 
number of HZ planets per star (see Table 1), we extrapolate additional planets (gray squares) beyond
the HZ. The sizes of the red hashed squares represent the maximum radius of the predicted planet. 

Using the Titius-Bode Relation to Predict the Periods of Kepler’s Missing Planets

Table 1. The estimated number of planets per star within various ‘habitable zones’.
(stenalpykcoRstenalpllA R ≤ 1.5 R⊕)

Sample Mars-Venus K13 “optimistic” K13 “conservative” Mars-Venus K13 “optimistic” K13 “conservative”

All 151 systems 2.0 ± 1.0 2.3 ± 1.2 1.5 ± 0.8 0.15 0.15 0.10
Least extrapolation b 1.6 ± 0.9 1.7 ± 0.8 1.3 ± 0.7 0.40 0.35 0.30

a K13 “optimistic” and “conservative” habitable zones refer to the “recent Venus” to “early Mars” and “runaway greenhouse” to “maximum
greenhouse’ regions from Kopparapu et al. (2013) respectively’.

b The 31 systems in the sample shown in Fig. 4 are those which need the least extrapolation (red hashed squares) to extend out to (or beyond)
the green Mars-Venus HZ.
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Figure 1: Period Ratios as a Proxy for Completeness
The distribution of adjacent planet period ratios, 
o�set from the mean period ratio in each system. The 
green distribution represents our ‘most complete’ 
systems  (unlikely to contain undetected planets). The 
black distribution indicates that the sampling of 
Kepler systems is highly incomplete. The blue distri-
bution represents the same systems after missing 
planets have been inserted using the Titius-Bode 

What is the Titius-Bode relation (TBR)
  • 

  •

  •

  •

The TBR was used to help discover the Asteroid 
Belt and Neptune, Uranus could have been discov-
ered earlier by using the relation, which was 
known at the time.
The TBR represents the approximately even loga-
rithmic spacing of planetary orbital distances or 
periods.
The relation is directly related to the period ratios 
of adjacent planets in the same system, which it 
predicts will be approximately constant: 
Pn+1/Pn ≈ C for all planets pairs in the system.
For adjacent planet pairs which do not have a 
period ratio near this common value, we assume 
there is at least one undetected planet between 
the planet pair and insert planets to increase the 
system’s adherence to the TBR (Figs. 1 and 2)

The transiting planetary systems discovered by the Kepler mission are subjected to signi�cant selection 
e�ects as the probability of a planet transiting falls o� with increasing period.
We expect many Kepler systems to have a high degree of incompleteness, as only some fraction of the 
planets around a star will transit while the other planets remain undiscovered. 
Previous period predictions that we have made resulted in the discovery of �ve new transiting planets.

  •

  • 

  •

What is the Probability of a Predicted Planet being Rocky?
  • 

  •

  •

  •

We de�ne a ‘rocky’ planet by its radius, with planets having Rp ≤ 1.5 R⊕ being 
assumed to be rocky (Rogers et. al. 2014).
The Titius-Bode relation directly gives a period for the predicted planet. We look 
at the period ratios between adjacent planets and the dynamical stability of the 
system to add an uncertainty to the predicted period.
Given the predicted planet period, the noise of the star, and the size of the 
detected planets in the system, we calculate the maximum radius of the predict-
ed planet which would have resulted in a detection. The predicted planet must 
therefore have a radius less than this value Rmax.
We use an assumed planetary radius distribution (Fig. 3), and calculate the 
fraction of the “undetectable” and “detectable” regions which are ≤ 1.5 R⊕.
This fraction is the probability of the predicted planet being rocky, i.e. what 
fraction of the parameter space not excluded by observations lies in the region 
where the planet is likely to be rocky (Rp ≤ 1.5 R⊕).
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Figure 3: Planet Radius Distribution
Our assumed planetary radius distribution. The distribution is well known 
above 1 Earth Radius but poorly constrained below this value (Howard et. al. 
2011, Foreman-Mackey et. al. 2014). The three regions represent planets that 
Kepler would have already detected, planets that Kepler may still detect and 
planets that Kepler will not be able to detect, for a given star and period.

~0.3 Rocky Planets Per Star in the Habitable Zone (Rp ≤ 1.5 R⊕)
  • 

  •

  •

  •

  •

For the 31 systems in our sample which have planets close to the habitable zone, 
we use the Titius-Bode relation to account for the expected detection incom-
pleteness and insert the missing, undetected planets.
We extrapolate the planetary spacing of the system such that it extends past the 
outer edge of the habitable zone.
We then calculate the probability of being rocky for each of these extrapolated 
planets.
On average, there are 2±1 planets in the habitable zone per star, almost indepen-
dent of our three different definitions of the habitable zone (Table 1 & Fig. 4).
Of the 2±1 planets in the habitable zone per star, we expect ~0.3 to be rocky


