What is the Titius－Bode relation（TBR）

－The TBR was used to help discover the Asteroid elt and Neptune，Uranus could have been discov－ ered earlier by using the relation，which was known at the time．
The TBR represents the approximately even loga－ periods．
－The relation is directly related to the period ratios of adjacent planets in the same system，which it
on predicts will be approximately constant：
$P_{n+1} / P_{n} \approx C$ for all planets pairs in the system．
－For adjacent planet pairs which do not have a period ratio near this common value，we assume there is at least one undetected planet between he planet pair and insert planets to increase system＇s adherence to the TBR（Figs． 1 and 2）
－The transiting planetary systems discovered by the Kepler mission are subjected to significant selection effects as the probability of a planet transiting falls off with increasing period．
－We expect many Kepler systems to have a high degree of incompleteness，as only some fraction of the －We expect many Kepler systems to have a high degree of incompleteness，as
－Previous period predictions that we have made resulted in the discovery of five new transiting planets．
 Figure 2：Detected Planets Based on Titius－Bode Relation Predictions
Exoplanet systems where an additional candidate was detected after a TB relation prediction Exoplanet systems where an additional candidate was detected after a TB relation prediction was made．Previ－
ously known planets are shown as blue circles．The predictions of Bovaird and Lineweaver（2013）and thei ously known planets are shown as blue circles．The predictions or bovaird and Lineweaver（ 2013 ）and their
uncertainties are shown by the red filled rectangles if the transit probability is high，or by red hatched rectan－ gles otherwise．The new candidate planets are shown as green squares．The critical semi－major axis，beyond
which the probability for a planet to transit is <0.5 ，is shown by a solid black arc．

Period ratio－mean period ratio of system The distribriod Ratios as a Proxy for Completeness The distribution of adjacent planet period ratios， green distribution represents our＇most complete＇ systems（unlikely to contain undetected planets）．The black distribution indicates that the sampling of
Kepler systems is highly incomplete．The blue distri－ bution represents highly incomplete．The blue distri－ bution represents the same systems after missing
planets have been inserted using the Titius－Bode


```
F
```



```
F
```



```
M,
M,
```


Poster based on


```
Moton,T.T.,&& &witt,I.2014, Th. Radius Distribution of Planets Around Cool Stars, Ap,,79, 10
```



```
S
```



```
Watson,G.5. 1982, Distributions on the Circle and Sphere, Juurnal of Applied Probability, 19, 26
Weissbein, A,&, & Stenberg, E. 2012, Serilie and fertie planetary systems statisitical anlyysis of multi-planet systems in keplers data
```


What is the Probability of a Predicted Planet being Rocky？ We define a＇rocky＇planet by its radius，with planets having $R_{p} \leq 1.5 R_{\oplus}$ being assumed to be rocky（Rogers et．al．2014）．
－The Titius－Bode relation directly gives a period for the predicted planet．We look at the period ratios between adjacent planets and the dynamical stability of the system to add an uncertainty to the predicted period．
－Given the predicted planet period，the noise of the star，and the size of the detected planets in the system，we calculate the maximum radius of the predict－ ed planet which would have resulted in a detection．The predicted planet must位
We use an assumed planetary radius distribution（Fig．3），and calculate the fraction of the＂undetectable＂and＂detectable＂＂egions which are $\leq 1.5 \mathrm{R}_{\odot}$ ． This fraction is the probability of the predicted planet being rocky，i．e．what
fraction of the parameter space not excluded by observations lies in the region where the planet is likely to be rocky（ $\left.R_{p} \leq 1.5 R_{\oplus}\right)$ ．
～0．3 Rocky Planets Per Star in the Habitable Zone（ $\mathrm{R}_{\mathrm{p}} \leq 1.5 \mathrm{R}_{\oplus}$ ） For the 31 systems in our sample which have planets close to the habitable zone， we use the Titius－Bode relation to account for the expected detection incom－ pleteness and insert the missing，undetected planets．
We extrapolate the planetary spacing of the system such that it extends past the outer edge of the habitable zone
We then calculate the probability of being rocky for each of these extrapolated planets．
On average，there are 2 ± 1 planets in the habitable zone per star，almost indepen－ dent of our three different definitions of the habitable zone（Table $1 \&$ Fig．4）．
－Of the 2 ± 1 planets in the habitable zone per star，we expect ~ 0.3 to be rocky

Our assumed planetary radius distribution．The distribution is well known above 1 Earth Radius but poorly constrained below this value（Howard et．al． 201，Foreman－Mackey et．al．2014）．The three regions represent planets that Kepler would have already detected，planets that Kepler may still detect and
planets that Kepler will not be able to detect，for a given star and period．
 Effective temperature［K］
ber of Habitable Zone Planets Per Star Figure 4．Extrapolating of planets within the 31 systems from our sample which extend out to the green habitable zone（HZ）after our planet predictions are made．For the purpose of estimating the number of HZ planets per star（see Table 1），we extrapolate additional planets（gray squares）beyon the $H Z$ ．The sizes of the red hashed squares represent the maximum radius of the predicted planet．

