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Abstract

\

Aerosol producing experiments simulating atmospheric chemistry on Titan & Early Earth.
Examined effects of O-bearing gas species, CO & CO,, in aerosol producing mechanisms.
Examined aerosol’s solubility to various solvents & performed UV-Vis spectroscopy for the solvents.
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Aerosols would have provided N-, O-bearing conjugated heterocyclic molecules on early Earth.
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 Absorption in this wavelength suggests the
existence of conjugated systems within the tholins.
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1. Formation mechanism of Titan tholin: CN radicals - HCN, CH,CN, aromatics, hydrocarbons - ... - Titan tholin

2. Formation mechanism of early Earth tholin: CN, CO radicals - HCN, CH,CN, aromatics, hydrocarbons - ... - Early Earth tholin
Production rate is determined by a balance of (1) contribution of CO (possibly direct incorporation of C=0) and (2) inhibition by oxygen atoms.

3. Early Earth tholin dissolve effectively to polar solvents as Titan tholin does. Though, some portions of both early Earth and Titan tholins dissolve to
non-polar solvent such as CH,Cl, and UV-Vis spectra of early Earth tholin in CH,CI, solution displayed a weak absorption band around 380 nm.
—> N, O-bearing conjugated heterocyclic compounds? (e.g., (poly?)pyrroles) - Aerosols might have played a key role in chemical evolution.
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