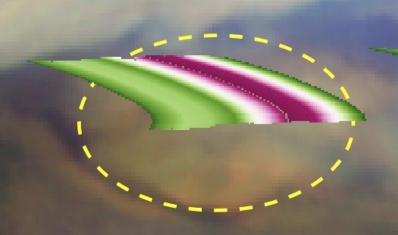
Update on Hubble Space Telescope

Space Telescope Users Committee (STUC)

Michael H. Wong
UC Berkeley / SETI Institute
mikewong @ astro.berkeley.edu



OPAG / Laurel MD / 2023-May-03 Background image: Bjoraker et al. (2022, *Remote Sensing*)

Calibration software

- Distributed through stenv.yaml instead of Astroconda channel
- Supposedly helps with Python > 3.7 dependencies
- (Python 3.7 security release support ends June 2023)

HST+JWST

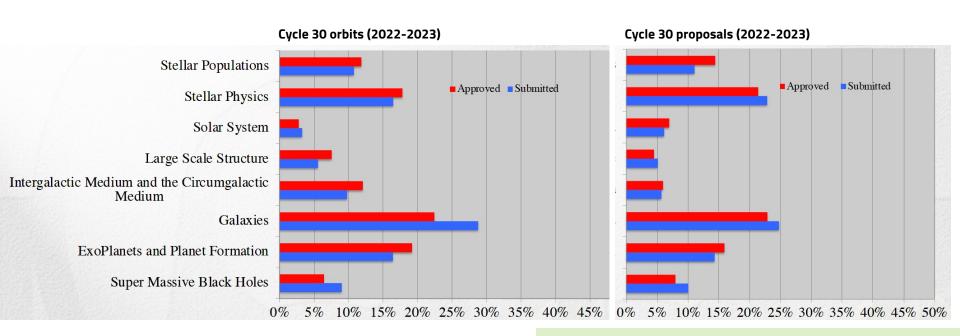
HST remains vital and innovative, + complementary power with JWST

- SpaceX /
 STScI / NASA
 study on
 boosting HST
 orbit
- But public views JWST as HST replacement (anecdotal)

Levenson presentation, STUC Oct 2022

Cycle 31 proposals due May 24

The Cycle 31 Call for Proposals


Cycle 31 will extend from December 1, 2023 to September 30, 2024. We will accept proposals for the following instruments: ACS, COS, FGS, STIS, and WFC3.

We anticipate allocating up to 2300 orbits in this cycle. See Hubble Space Telescope Call for Proposals for Cycle 31 for further details.

This solicitation for proposals will be open through Wednesday May 24, 2023 at 8:00pm EDT. The Astronomer's Proposal Tool (APT), which is required for Phase I Proposal Submission, was made available for Cycle 31 Phase I use on February 23, 2023. Results of the selection will be announced by late August.

- More target of opportunity / interruption support, flexible Thursdays
- Joint HST+JWST proposal type
- Combined GO+AR is OK now

Proposal pressure by topic

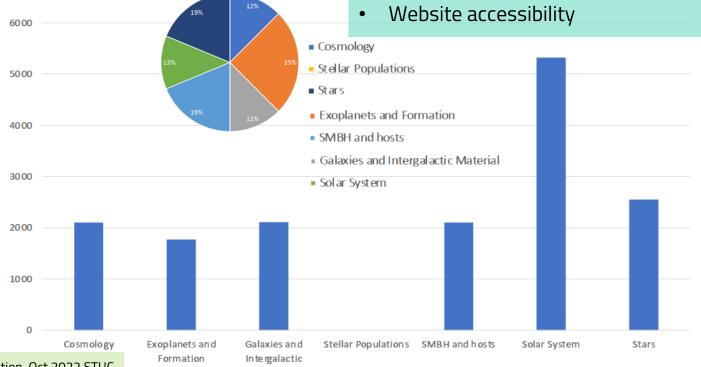
Leitherer presentation, STUC Oct 2022

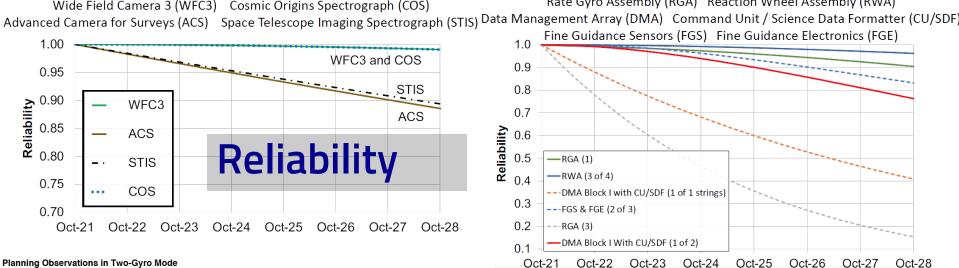
HST Solar System Science Programs

Cycle 30 outer planet systems

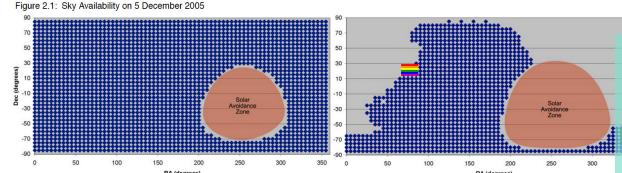
Mon May 1 03:30:06 EDT 2023

Cycle	Type	ID	PI	Title	Allocated Orbits			
31	GO/DD	<u>17294</u>	Amy Simon	Hubble 2020: Outer Planet Atmospheres Legacy (OPAL) Program				
30	GO	<u>17302</u>	Qicheng Zhang	Mapping the Debris of Comet 96P/Machholz	7			
30	GO	<u>17297</u>	David Jewitt	volution of the DART Dimorphos Debris Field				
30	GO/DD	<u>17293</u>	David Jewitt	The Boulder Field of Didymos				
30	GO/DD	<u>17292</u>	Jian-Yang Li	Long-Term Evolution of Dimorphos's Dust Tail Created by the DART Impact				
30	GO/DD	<u>17291</u>	Colin Chandler	Investigating a Vanishing Active Centaur				
30	GO	17289	David Jewitt	Macroscopic Debris from the DART impact	4			
30	GO	<u>17288</u>	David Jewitt	A New Asteroid Pair				
30	GO	<u>17275</u>	Michael Wong	The closure of two climate cycles in Jupiter's atmosphere during the Juno era	8			
30	GO/DD	<u>17254</u>	Jacqueline Keane	Determining the Driver of Activity in a Newly Discovered Main Belt Comet	2			
30	GO	<u>17215</u>	David Jewitt	Asteroid Bennu Large Particle Trail	8			
30	GO	<u>17214</u>	Laurent Lamy	Unravelling the auroral diversity and magnetospheric dynamics of Uranus while approaching solstice	12			
30	GO	<u>17206</u>	Benjamin Proudfoot	Investigating Planet Formation in the Cold Classical TNOs Through Non-Keplerian Analysis	8			
30	GO	<u>17187</u>	Naomi Rowe-Gurney	Observing the Ice Giants with Hubble WFC3 to Enhance Cycle 1 James Webb Space Telescope Data	12			
30	GO	<u>17163</u>	William Sparks	Probing the icy regoliths of Europa with imaging polarimetry				
30	GO	<u>17150</u>	Samantha Trumbo	Targeted Observations of Ceres' Occator Crater with HST/STIS	1			
30	GO	<u>17142</u>	Samantha Trumbo	Europa's UV absorptions: oceanic or exogenic origins?				
30	GO	<u>17099</u>	Lorenz Roth	Ganymede's water atmosphere in eclipse				
30	GO	<u>17089</u>	Amanda Hendrix	Characterizing Primitive Asteroids				
30	GO/DD	<u>16995</u>	Amy Simon	Hubble 2020: Outer Planet Atmospheres Legacy (OPAL) Program	41			
30	GO	<u>16993</u>	Jessica Agarwal	Interconnection between outgassing, fast rotation and mutual orbit in binary main-belt comet 288P	3			
30	GO	<u>16989</u>	Jonathan Nichols	Observing Jupiter's FUV auroras during the Juno Extended Mission				
30	GO	16987	Lawrence Sromovsky	Spectroscopic diagnosis of changing back yard giant exoplanets.	4			
29	GO/DD	<u>16929</u>	David Jewitt	Disintegration of Long-Period Comet C/2021 A1				
20	GO	16024	Simon Porter	Colors and Astrometry of Two New Horizons Target Scattered Disk Objects				


Outreach


Estimated Reach by Topic

Outreach office has been increasing accessibility


- Tactile exhibits
- Alt text

Material

2-Gryo Handbook

FGS-2 "servo compensation errors"

Affects moving target observations more

Adding "maintenance slews"

Tom Brown presentation, STUC May 2022

3 remaining enhanced gyros have outlived any prev. standard gyros

Oct-28

Funding

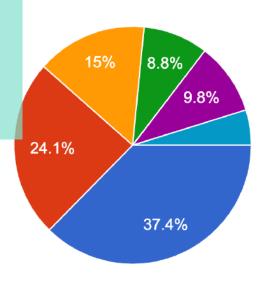
Budget Status

FY22	FY23	FY24	FY25	FY26	FY27	FY28
\$98.3	\$93.3	\$98.3	\$98.3	\$98.3	\$98.3	\$98.3

Wiseman+Crouse presentation, Oct 2022 STUC

- Hubble project budget expected to remain flat into the future
- Analysis support was \$32.5M in FY22

Approved Amount	Available at Award	Available when 90% expended
Up to \$30,000	100%	
Up to \$50,000	50%	50%
Greater than \$50,000	20%	20% in equal increments

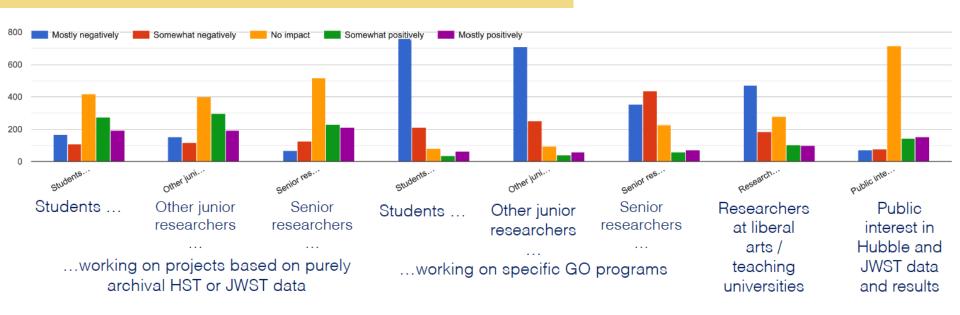

Brown presentation, Oct 2022 STUC

- Analysis funds are awarded in small increments
- Institutions hate it
- Needed to avoid "uncosted carryover"

Survey on zero exclusive access period

- Survey closed Feb 15
- 1171 responses
- Community did not broadly support reducing HST and JWST EAP to 0
- Report forthcoming on demographics of survey response

How would 0 EAP affect your/your group's research plans?


- Mostly negatively
- Somewhat negatively
- No impact
- Somewhat positively
- Mostly positively
- I don't know

Majority negative, but 1:5 positive.

Laura Watkins presentation, JSTUC March 2023

Survey on zero exclusive access period

How do you think 0 EAP would affect certain groups?

