

A relocatable lander to explore Titan's prebiotic chemistry and habitability

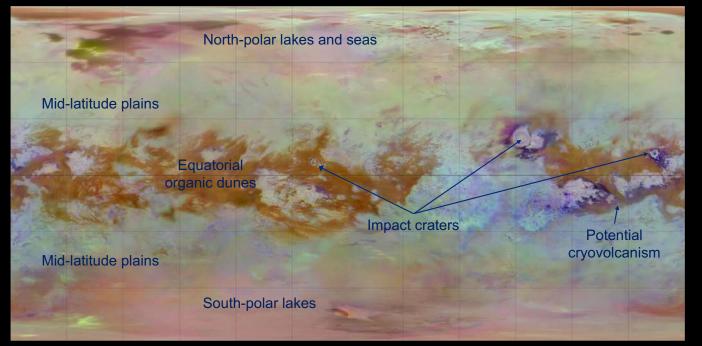
Dragonfly Update

OPAG, 3 May 2023

Principal Investigator: E. Turtle (APL) DPIs: M. Trainer (GSFC), J. Barnes (Univ. Idaho) Project Manager: R. Fitzgerald (APL); DPM A. Azarbarzin (APL) Mission System Engineer: K. Hibbard (APL); DMSE E. Adams (APL) Dragonfly

Outline

- Mission science
- Project status and recent work



Opportunity to seek answers to fundamental astrobiology questions

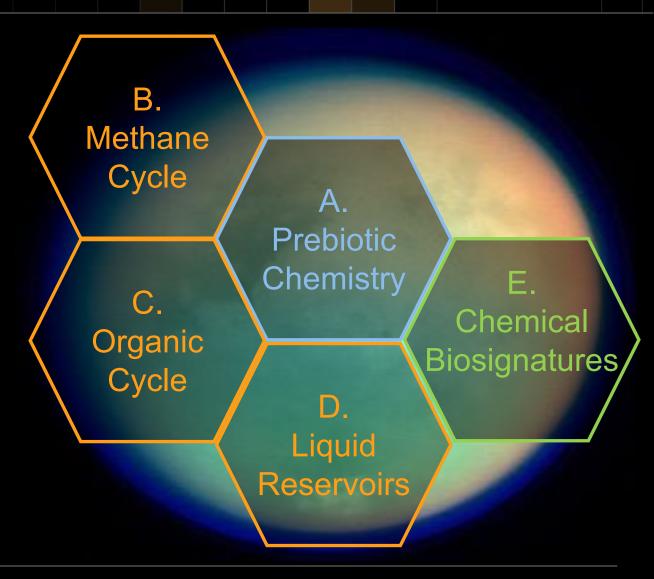
What makes a world habitable?

What chemical processes led to the development of life?

Has life developed elsewhere in our solar system?

Cassini enhanced-color map of Titan's surface at near-infrared wavelengths (Seignovert et al. 2019)

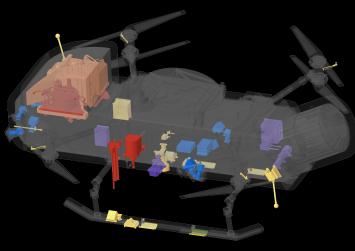
On Titan, we can study prebiotic chemistry in the full context of a planetary environment with Earth-like surface processes

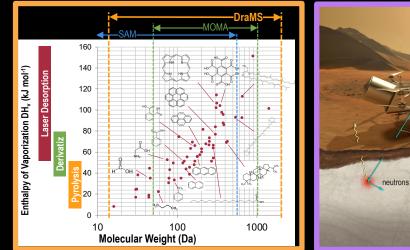


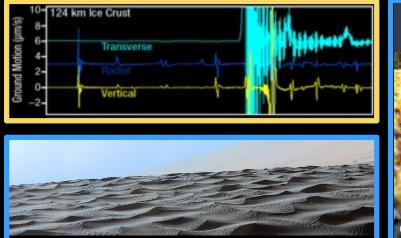
Dragonfly mission science

Barnes et al., *PSJ*, 2021 https://doi.org/10.3847/PSJ/abfdcf

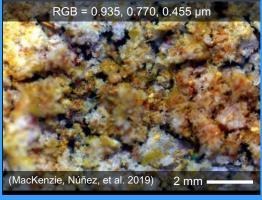
- Analyze chemical components and processes at work that produce biologically relevant compounds
- Habitable environments
 - Measure atmospheric conditions, identify methane reservoirs, and determine transport rates
 - Constrain processes that mix organics with past surface liquid water reservoirs or subsurface ocean
- Search for biosignatures
 - Search for chemical evidence of water- or hydrocarbon-based life

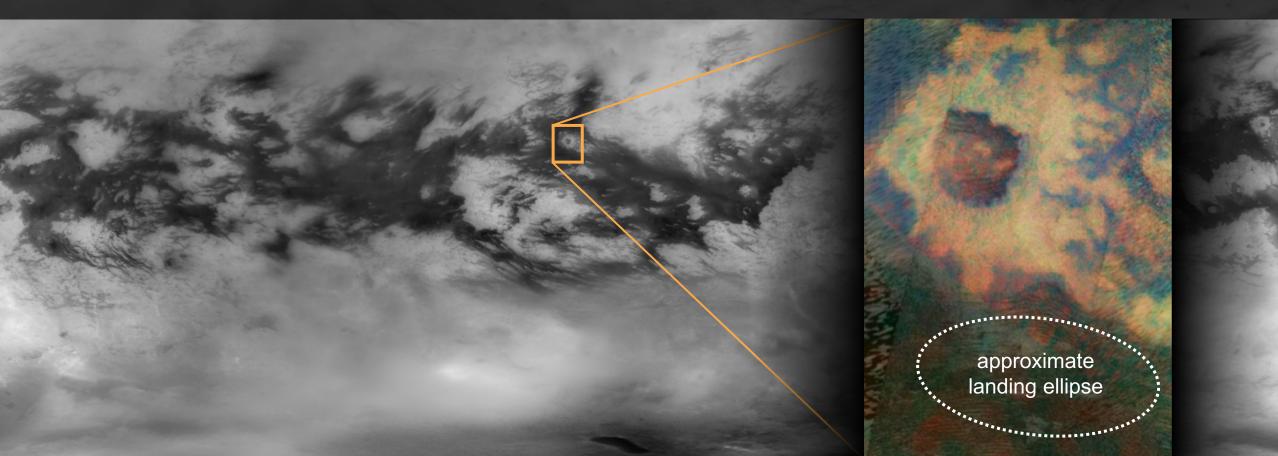




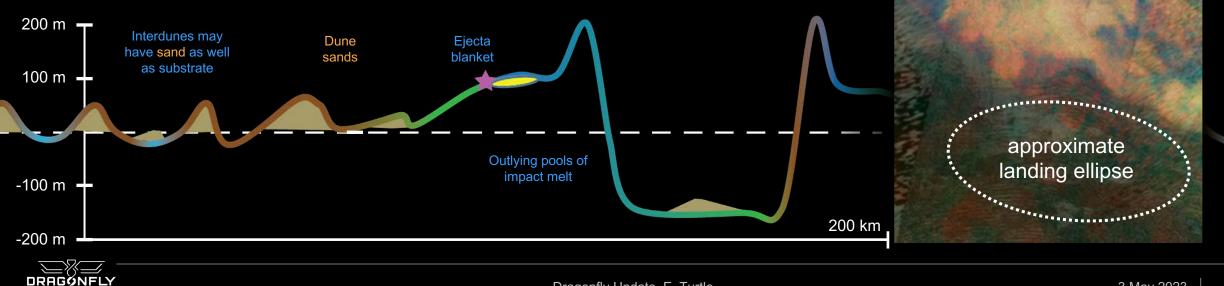

Multidisciplinary science measurements


- DraMS: Mass Spectrometer
- **DrACO:** Drill for Acquisition of Complex Organics
- **DraGMet:** Geophysics & Meteorology Package
- DragonCam: Camera Suite
- DraGNS: Gamma-ray Neutron Spectrometer




LED illuminated mixture of water ice (white) and two tholin 'flavors' (orange + yellow)

Dragonfly landing site provides access to organic sediments & materials with a water-ice component


- Sand dunes: organic sediments
- Interdune areas: materials with a water-ice component
- Selk impact crater: materials where organics may have mixed with liquid water impact melt

Dragonfly exploration strategy

~3.3 years, ~74 Tsols (Titan days) of science operations

- Traverse distance several tens of km
- Exploration of >30 unique sites
- Aerial scouting of future landing sites
- 16-day Tsols
 - Nominal flight schedule is once per 2 Tsols (~1 flight / Earth month)
 - Most of time (99.9%) is spent on the surface: science measurements; data downlink; groundin-the-loop operations

Organic Sand Interdune Materials

Ejecta Blanket

Impact Melt

Dragonfly Phase B activities

- Preliminary design phase focus on maturation of requirements, design, interface definitions, and risk reduction
 - Define element and subsystem requirements, Titan environment specifications and Environment Requirements Document (ERD)
 - Develop preliminary design for elements and subsystems that meets resource requirements and fits within mission concept of operations
 - Develop preliminary Interface Control Documents (ICDs) and Mission Level Verification & Validation (V&V) Plans
 - Demonstrate technology development items meet Technology Readiness Level 6 (TRL-6); two were eliminated through design trades
 - Mature Concept of Operations (ConOps)
- Document status
 - Rules of the Airways (RotA) developed as living document with annual review and acknowledgement by full Dragonfly Team
 - Planetary Protection Category II concurred with NASA Office of Planetary Protection
 - National Environmental Policy Act (NEPA) Finding of No Significant Impact (FONSI), Nuclear Launch Authorization Plan (NLAP), Project Protection Plan, and Risk Classification Memo all have been approved by NASA
 - Communications and Public Engagement Plan approved by NASA
 - NASA Standing Review Board (SRB) formally approved
 - Level 1 requirements reviewed with NASA, and Program Level Requirements Appendix (PLRA) signed
 - International agreements with CNES and DLR have been signed; JAXA letter in place, agreement in progress
- Dragonfly Student Guest Investigator Program Cohorts 1-3
- NASA H2O (Here to Observe) partnership with Virginia State University

Design updates through Phase B: Highlights

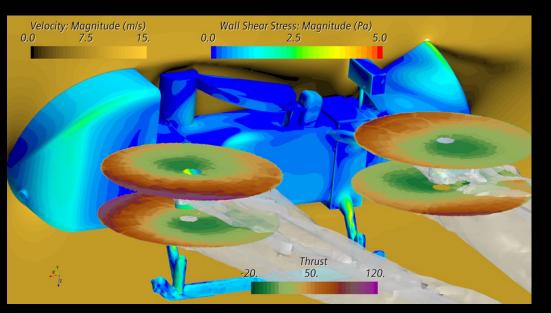
- External MMRTG (multi-mission radioisotope thermoelectric generator) modifications to reduce fin length and adjust thermal loops, reducing size and simplifying accommodations
- Replaced low-gain antenna (LGA) cluster with medium-gain antenna (MGA) and LGA
- Simplified Lander leg design from hinged deployment with dampers to fixed legs meeting landing loads without dampers
- Definition of Flight Reference Mission flexible flight schedule facilitates energy management and response to contingencies
- Updated spacecraft and cruise for high-energy trajectory
- Trades to reduce complexity and risk and increase mass margin, while preserving Science Objectives
 - Leveraged use of Mg instead of Al in boxes for mass savings
 - Single drill mounted to Lander body instead of directly to skid reduces sampling risk; backup sampler design
 - Replaced cameras mounted on high-gain antenna (HGA) with Lander-mounted side-looking cameras to simplify thermal design, HGA gimbal design, and ConOps, as well as reduce mass
 - Balancing single-string and redundant elements and subsystems

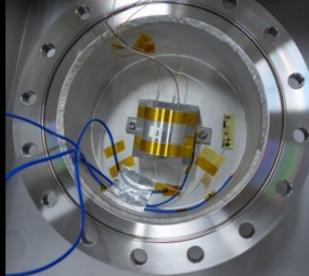
Dragonfly Project status

- Technology maturation and preliminary design complete
- Successful Mission Preliminary Design Review, (MPDR) February-March 2023
 - 22 subsystem & instrument PDRs and >40 associated peer reviews leading up to MPDR
 - Working to close requests for action (RFAs) from Standing Review Board (SRB)
- Ongoing detailed design activities and preparation for NASA Confirmation Review in September 2023

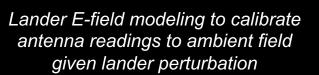
Phase B activities: Development and testing

- Completed mobility capstone test flights
 - Scout and linked Leapfrog flights, including autonomous navigation, takeoff, and landing
- Subsystem and instrument testing
 - Completed pre-PDR testing in LaRC Transonic Dynamics Tunnel (TDT)
- Full-scale lander body mock-up built to support harness, packaging, and I&T (Integration and Test) development
- Focus on thermal-mechanical-structural and mobility development
 - Assembly of development test module (DTM) underway full-scale representation of Lander primary structure





Phase B activities: Development and testing

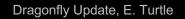

- Prototype and EM (engineering model) builds and environmental and life testing underway for various components, including DraMS miniature scroll pump (MSP) and ion-trap mass spectrometer (ITMS); DraGMet sensors; DragonCam windows; DraGNS pulsed neutron generator (PNG)
- Refinement of interfaces and mechanical interface documents (MICDs)

New iteration of CFD (computational fluid dynamic) tables for thrust/drag performance (M. Kinzel, U. Central Florida)

DraGMet seismometer cryo testing at JAXA; EM (engineering model) assembled for delivery to APL

0.0e+00

Phase B activities: APL test facilities


Titan Pressure Environment Chamber (TPEC)

DraGMet wind sensor setup for testing at Titan's 94-K cryogenic temperature and at 1.5bar surface pressure, so that gas flow conditions are fully representative of the Titan environment DrACO ETU (engineering test unit) end-to-end testing of drilling and sample collection in APL TPEC with water ice sample (dyed purple) at -180°C

Preering end and in APL

System power-on to check pumps and balance thermal systems scheduled week of 8 May 2023

Dragonfly Student and Early Career Guest Investigator Program: Broadening Mission Participation

Quick et al., 2021: https://www.hou.usra.edu/meetings/lpsc2021/pdf/2653.pdf

Cohort	Project	Dragonfly Team Mentors	Grad Student Guest Investigators
1 2021-23	Seismic investigation of Titan's interior using full waveform modeling	Mark Panning, JPL	Andrea Bryant, University of Chicago, Physics
	Spectral/compositional library for interpretation of DragonCam / DraGNS measurements	Shannon MacKenzie & Richard Miller, APL	Karla Negrete , University of Maryland Baltimore County (UMBC), Mechanical Eng.
	Development of the DragonCam microscopic imager multispectral LED arrays	Jorge Núñez, APL	Brianna Wylie, Florida Agricultural & Mechanical University (FAMU), Mechanical Eng.
2	Tuning DraGNS' Interpretations to Titan's Surface	Ann Parsons, GSFC & Patrick Peplowski, APL	Anna Engle , Northern Arizona Univ. (NAU), Astronomy and Planetary Sci.
2022-24	Development of DraMS Instrument Operational Guidelines	Melissa Trainer, GSFC	Will Suero Amparo , New Jersey Institute of Tech., Biomedical Engineering
3 2022-24	Volatility of Titan-Relevant Compounds and Implications for Dragonfly Analyses	Morgan Cable & Rob Hodyss, JPL	A'Laura Hines , George Mason University, Chemistry
	Building a Library of Diagnostic Fracture Patterns and Erosional Morphologies for Interpretation of DragonCam Images	Ellen Stofan and Dr. Emily Martin, Smithsonian NASM	Shahrose Khan , Univ. of California San Diego, Aerospace Engineering
	Background Research for DrEAM Aeroscience Experiment	Aaron Brandis, NASA Ames	Alyssa Vellucci, Univ. of Texas Dallas, Mech. Eng.

Goals of Program

- Extend opportunities for graduate students to work with *Dragonfly* scientists and engineers
- Encourage broader participation by making it easier for students who *don't* already have connections to *Dragonfly* or NASA spacecraft missions and/or who *don't* have a planetary science background
- Provide networking opportunities and to expand training of the next generation of mission team members and leaders

Dragonfly Student and Early Career Guest Investigator Program: Broadening Mission Participation

Quick et al., 2021: https://www.hou.usra.edu/meetings/lpsc2021/pdf/2653.pdf

Applications for Guest Investigators cohort #4 are being accepted through 16 June 2023 https://dragonfly.jhuapl.edu/Student-Opportunities/

Cohort	Project	Dragonfly Team Mentors
4 2023-25	Data visualization library for Dragonfly science operations	Jake Strang, APL
	Dragonfly science planning tool development	Hari Nair, APL
	Characterizing sample morphology to interpret DragonCam images	Ellen Czaplinski, JPL; Shannon MacKenzie & Jorge Núñez, APL

- Goals of Program
 - Extend opportunities for graduate students to work with *Dragonfly* scientists and engineers
 - Encourage broader participation by making it easier for students who *don't* already have connections to *Dragonfly* or NASA spacecraft missions and/or who *don't* have a planetary science background
 - Provide networking opportunities and to expand training of the next generation of mission team members and leaders

DRAGØNFLY

http://dragonfly.jhuapl.edu