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Introduction: Areas of Jupiter’s moon, Europa, 

contain irregular ice floes that are illustrative of the 

massive disruption, reorientation, and refreezing 

experienced on Europa’s surface as Jupiter’s gravity 

imparts immense tidal forces that heat the moon [1]. In 

recent years, various machine learning programs have 

been used to detect surface features on planetary bodies. 

Most commonly, such software works to count craters 

for estimating planetary surface age [2] or to map sand-

filled dune fields whose shapes may indicate wind or 

weather patterns [3]. Creating software to automatically 

detect Europa’s jigsaw-like ice floes will accelerate 

scientific analysis of such terrains once higher 

resolution images of the moon arrive in the fall of 2022 

from the Juno spacecraft and later from the forthcoming 

Europa Clipper mission.  

Model and Training:  In this project, a U-net, a 

deep learning semantic segmentation model [4], was 

applied to images of the surface of Jupiter’s moon 

Europa taken by the Galileo spacecraft to detect ice 

floes in the moon’s Chaos Terrains. Designed for the 

segmentation of images, the original program used in 

this study was specifically developed to detect the outer 

membranes of cells in biomedical images [4]. That 

architecture was further altered to detect Above-Anvil 

Cirrus Plumes in satellite data [5]. Both studies had 

images where the desired features could not be isolated 

using basic edge detection, denoising, or arithmetic 

functions; this was critical, as the images of Europa had 

similar qualities.  

Results: Hao’s original U-net needed to be altered 

to successfully detect the ice floes on Europa. Model 

hyperparameters such as training rate and training 

epochs were tuned to improve performance. (Fig. 2).  

Discussion:  To measure the quality of the program 

developed, the Intersection over Union (IoU), a metric 

that measures the goodness of fit for semantic 

segmentation, was calculated:  

      
The area of intersection is the total area of the true 

positives, where the training polygons outlining the ice 

floes overlap with the detection of floes through the 

algorithm. The area of union includes all areas where 

the either the algorithm or the human  labeled a pixel as 

an ice floe (the sum of true positives, false positives, and 

false negatives) [5]. Refining the algorithm increased 

the IoU from its original value of 0 to 0.286. Overall, 

the algorithm functioned best when ice floes were hand-

labeled using loose-fitting polygons rather than exact 

edge-mapping. Future research will seek to improve 

model performance through model hyperparameter 

tuning, data augmentation, and refinement of human 

labels. 

As Galileo faced transmission issues, the usable 

dataset was limited to 23 images, 19 of which were used 

for training and 4 for testing. The small amount of data 

presented a risk of the U-net overfitting and not 

generalizing to new data. This was prevented by 

adjusting parameters like learning rate and training 

epochs and evaluating the model performance on the 

test set, even though the test set was small.  

The U-net was most effective for images with 

resolutions near 50 meters per pixel (mpp). Currently, 

the average image of Europa’s surface to date has a 

resolution closer to 500 mpp. In the coming months, 

data augmentation will provide additional training 

images that should further improve the performance of 

the U-net. K-fold cross-validation will also be applied 

across the automated dataset.  This will provide a more 

methodical means of evaluating the effects of different 

hyperparameter settings during model training. Once 

the algorithm is sufficiently capable of identifying floes 

in the Chaos Terrains, it may later assist in selection of 

regions of interest for further study on Europa or even 

landing sites for a future proposed lander. 
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