


Is the longitudinal distribution of H₂O ice different on Miranda compared to the other Uranian satellites? David DeColibus¹, Nancy Chanover¹, Richard Cartwright²

(¹New Mexico State University, ²SETI Institute)

- ice band (**Table 1**).
- quadrants of Miranda's surface (Table 2).
- trailing quadrants or hemispheres.
- considered.

Dataset	Measurement	N	Longitude	F-value	<i>p</i> -value	Reject null hypothesis?	
		max absorption					
			(°)				
All spectra	1.52- μm area	34	166.4	4.569	0.01824	Yes	
	$1.52\text{-}\mu m$ depth	34	162.9	13.404	0.00006	Yes	
	2.02- μm area	34	174.6	1.596	0.21892	No	
	2.02- μm depth	34	191.4	0.834	0.44380	No	

Table 1: We present the results of our F-test analysis. N refers to the number of data points (spectra) included in our model fits. We reject the null hypothesis if the p-value calculated from the F-test is $p \leq 0.05$.

Dataset	Ratio ^a	$1.52 - \mu m$	i band	2.02 - μm band		
		Area ratio	Depth ratio	Area ratio	Depth ratio	
All spectra	LQ/TQ	0.98 ± 0.08	1.10 ± 0.21	1.03 ± 0.03	0.99 ± 0.06	
	LH/TH	0.97 ± 0.07	1.04 ± 0.14	1.00 ± 0.02	0.99 ± 0.04	
	AQ/SQ	1.26 ± 0.13	1.27 ± 0.09	1.01 ± 0.02	0.97 ± 0.04	
Miranda	LH/TH	0.94 ± 0.18		0.95 ± 0.09		
Ariel	LH/TH	1.46 ± 0.06		1.27 ± 0.03		
Umbriel	LH/TH	1.21 ± 0.096		1.14 ± 0.038		
Titania	LH/TH	1.15 ± 0.033		1.11 ± 0.034		
Oberon	LH/TH	1.09 ± 0.0465		1.09 ± 0.023		

Table 2: We present ratios between the mean band measurements for opposing quadrants and hemispheres of Miranda's surface. L, T, A, and S refer to leading, trailing, anti-Uranus, and sub-Uranus, respectively, while Q indicates the average is over a quadrant, and H refers to average over a hemisphere. All errors are 1σ errors. At the bottom of the table we include the leading/trailing hemisphere ratios for Miranda and the other Uranian satellites reported in Cartwright et al. (2018).

Figure 6: The variation of band areas (left panel) and depths (right panel) with longitude on Miranda's northern hemisphere. The upper set of measurements is the 2.0-µm band, and the lower set is the 1.5-µm band. Blue squares are TripleSpec spectra, green circles are SpeX spectra, and red triangles are GNIRS spectra. The best-fit constant and sinusoidal models are solid yellow lines and gray dashed lines, respectively.

• A sinusoidal model provides a statistically significant better fit than a constant model to the variation of band areas and depths with longitude for the 1.5- μ m H₂O ice band, but not for the 2.0- μ m H₂O

• However, instead of the expected leading/trailing asymmetry, the sinusoidal model fits an asymmetry between the sub-Uranus and anti-Uranus regions of Miranda's surface (**Fig. 6**).

We also calculated ratios of mean band strength between opposing

• There is a statistically significant asymmetry in the 1.5- μ m band areas and depths between the anti-Uranus and sub-Uranus quadrants, but effectively no asymmetry between the leading and

• There is no statistically significant asymmetry in the 2.0- μ m H₂O ice band, regardless of which opposing quadrants or hemispheres are

Conclusions between the leading and trailing hemispheres of

- There is no statistically-significant asymmetry Miranda in the strength of the near-IR H₂O ice absorption bands.
- The depth of absorption features in H_2O ice is not solely controlled by abundance. Other effects like grain size [5,6] and low-albedo contaminants [11] can play a substantial role.
- More exotic explanations may be at play, such as complex magnetospheric irradiation effects, polar reorientation of Miranda [12], a lack of spectral 'masking' by CO₂ ice [13], mantling by icy or dusty ring particles [4,14], or the effects of geological activity, such as resurfacing or plume deposits [14].
- The apparent anti-Uranus/sub-Uranus asymmetry in the strength of the 1.5-µm band also suggests that there is more to Miranda's H₂O ice than an explanation based on a simple leading/trailing model would account for.
- Our upcoming paper and our future work will investigate our findings in more detail.

Could Miranda be an ocean world?

- Previous authors have noted the parallels between Miranda and the similarly-sized, active ocean world Enceladus [e.g. 14,15], including the positioning of tectonically-modified regions on their surfaces attributed to internal upwelling [16] (Fig. 2).
- A previous detection of an absorption feature at 2.2 µm on Miranda has been attributed to NH₃-hydrate [17], and a similar absorption band was recently confirmed on Ariel and may be due to NH_3/NH_4 -bearing species [18]. The exact identity of the absorber(s) is an open question.
- NH₃ is a potent antifreeze and is thought to enable endogenic activity and possibly the retention of internal oceans on icy satellites [e.g. 19].
- Our future work with our dataset will explore the implications of our results in more detail and put constraints on the presence of volatile species on Miranda's surface, but only a Uranus orbiter mission could answer this question definitively [20].

References and Acknowledgements

[1] Grundy et al. (2003), *Icarus*, 162, 222. [2] Grundy et al. (2006), *Icarus*, 184, 543. [3] Cartwright et al. (2015), *Icarus*, 257, 428. [4] Cartwright et al. (2018), *Icarus*, 314, 210. [5] Clark et al. (1983), *Icarus*, 56, 233. [6] Clark et al. (1984), *Icarus*, 58, 265. [7] Smith et al. (1986), *Science*, 233, 43. [8] Zahnle et al. (2003), *Icarus*, 163, 263. [9] Stryk & Stooke (2008), LPSC, 39, 1362. [10] Gourgeot et al. (2014), *A&A*, 562, A46. [11] Clark & Lucey (1984), *JGR*, 89, 6341. [12] Pappalardo & Greeley (1993), LPSC, 24, 1111. [13] Cartwright et al. (2020a), *Icarus*, 338, 113513. [14] Cartwright et al. (2020b), *LPSC*, 51, 1699. [15] Pappalardo & Schubert (2013), *LPSC*, 44, 2808. [16] Pappalardo et al. (1997), JGR, 102, 13369. [17] Bauer et al. (2002), *Icarus*, 158, 178. [18] Cartwright et al. (2020c), *ApJL*, 898, L22. [19] Kargel (1992), *Icarus*, 100, 556. [20] Cartwright et al. (2021), *PSJ*, 2, 120.

This research was funded under NASA FINESST grant award number NSSC20K1378. This work makes use of new observations acquired with the Astrophysical Research Consortium 3.5m telescope at Apache Point Observatory, new observations acquired under program ID GN-2020B-FT-205 at the Gemini North telescope, and observations previously obtained at the Infrared Telescope Facility (IRTF), which is operated by the University of Hawaii under contract 80HQTR19D0030 with the National Aeronautics and Space Administration. We extend our appreciation and thanks to the support staff at these facilities that made this project possible.