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Tectonic Regime Diagram

Model Setup
• 2D spherical annulus numerical models using StagYY (Tackley, 2008)
• Parameter space:

- Lithosphere thickness, hL = [200, 250, 300] km
- Maximum viscosity, 𝜂!"# = [1023, 1024, 1025] Pa∙s
- Compositional buoyancy of crust (i.e. Bcrust = 𝜌$,&'()* − 𝜌$,!"+*,-) 

Bcrust = [-175, -265, -300, -350, -400] kg/m3

• Earth-like phase transitions were adjusted to shallower depths due to Venus’s lower
gravity (Ogawa & Yanagisawa, 2014) (Fig. 3)

• Post-processing and visualization done using StagLab (Crameri, 2018)
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Mechanism for Delamination Initiation

Conclusions
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• Over 10,000 km of possible subduction sites have been identified on Venus, which have 
elastic thicknesses, plate bending moments and bending curvatures comparable to 
subduction zones on Earth (Schubert & Sandwell, 1995). 

• Proposed subduction sites are located near (1) coronae and (2) groupings of rift-zone 
trenches called chasmata (Fig. 1).

• Previous numerical (Gülcher et al., 2020) and experimental (Davaille et al., 2017) studies 
have validated the possibility of regional-scale subduction initiation at coronae via 
plume-lithosphere interactions. 
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Fig. 3: Phase Transitions
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Fig. 4

Ref. model (#23) with Bcrust = -300 
kg/m3, hL = 250 km, 𝜂!"# = 1024 

Pa∙s.

Thicker plate edge begins to bend 
downward due to (-) buoyancy of 

lithospheric mantle. Eclogite begins 
to form.

The slab peels back from the 
surface and thicker layers of crust 

are subducted due to eclogitization 
of the crustal root. Crust over plate 

gap continues to be thinned.

Slab tip is deflected upward due to 
positive buoyancy of the garnet 

trap and postspinel phase 
boundary deflection. 

The plate necks and thins at the 
delamination hinge prior to slab 

break-off at the surface
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• Only two tectonic 
regimes were observed: 
stagnant-lid (S.L.) or 
peel-back delamination. 

• All negatively-buoyant 
plates delaminated, but 
not all positively-buoyant 
plates remained S.L. 

• For positively-buoyant 
plates:

- Thickest lithosphere 
(300 km) always 

delaminated
- Thinnest lithosphere 

(200 km) remained S.L.
- Increasing crustal 

buoyancy caused 250 km-
thick plate to go from 
delamination to S.L.

• All lithospheric recycling events occurred via the peel-back delamination tectonic regime.
• Peel-back delamination is a form of lithospheric recycling which occurs when dense

lithospheric mantle decouples from the crust and peels away, leaving behind a hot,
thinned layer of crust at the surface.

• Until now, no studies have tested the viability of 
subduction initiation at a chasma rift zone on Venus. 
Here, we present numerical experiments used to 
determine if and how regional-scale lithospheric 
recycling could be initiated at a Venusian rift 
zone.   
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• Peel-back delamination is driven by the negative buoyancy of the lithospheric mantle.

• Delamination is resisted by (1) the coupling of the plate across the Moho, (2) the positive compositional
buoyancy of the crust, and (3) increasing plate strength.

• Unlike subduction, delamination does not require net-negative plate buoyancy.

• Following a delamination event, the emplacement of hot, buoyant asthenosphere beneath the crust may have
consequences for regional-scale volcanism and tectonic deformation.

• 30 km-thick layer of crust is relatively weak (C0 = 10 MPa).

• Excess negative buoyancy of the lithospheric mantle
results in initial plate bending, which causes the crust to
yield (Fig. 5A)

• Crustal yielding reduces its viscosity, creating a weak-
zone delamination-surface to enable decoupling of the
crust and lithospheric mantle.

• The length of the weak zone increases with increasing
plate bending and crustal yielding (Fig. 5C).

• Eclogite formation at the base of crustal root (~70 km
depth) helps sustain slab sinking (Fig. 5F, 5H).

Thicker, more negatively-buoyant lithosphere enhances 
crustal yielding and weak-zone formation, which enables 

delamination initiation.
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• Net plate buoyancy was controlled by two of the three variables

in our parameter space: lithosphere thickness and crust density.

• The total density of each plate was calculated as a function of
depth, including both thermal and compositional components
(Fig. 6).

• Integrating the density profiles over depth with respect to the
reference mantle density gives a single value, ∆𝜌!"#$% ,
describing the net density contrast between the plate and the
underlying mantle:

∆𝜌!"#$% = $
&

'!
(𝜌 𝑧 − 𝜌&)𝑑𝑧

Fig. 6
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