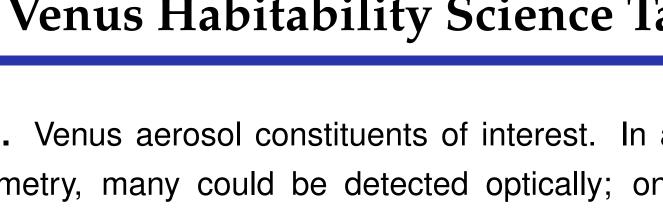
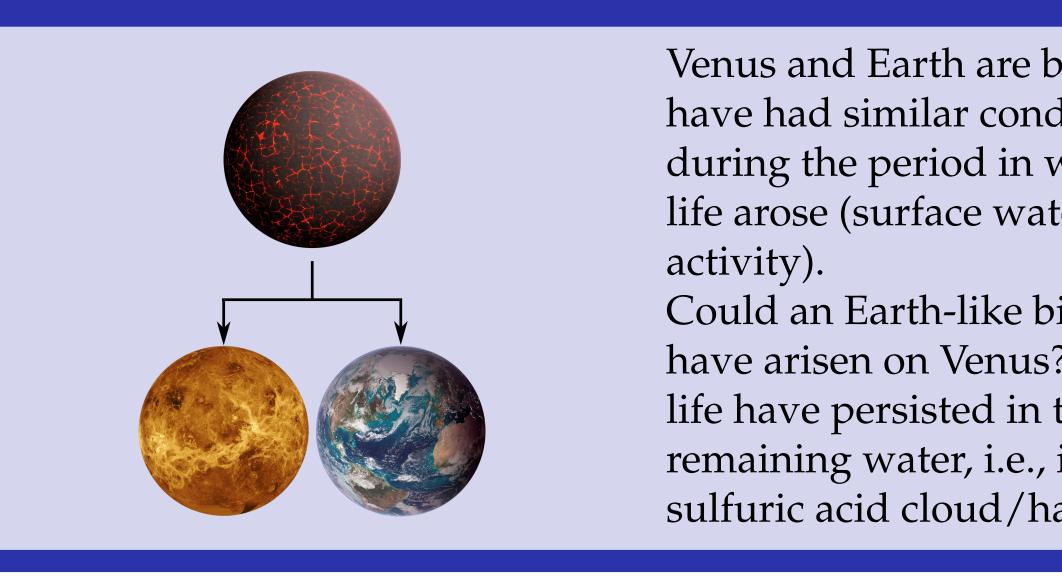

Cloud Habitability from Earth to Venus: Science & Technology Considerations D. M. Gentry¹, L. Iraci¹, A. Cassell¹, A. Mattioda¹, A. Brecht¹, K. Simon², P. Sobron², A. Davila¹


Although airborne reproduction has not yet been observed *in situ*, this may be due to the relatively short lifetime of Earth clouds.

Venus Habitability Science Targets

Table 1. Venus aerosol constituents of interest. In addition to mass spectrometry, many could be detected optically; only the strongest bands are listed.

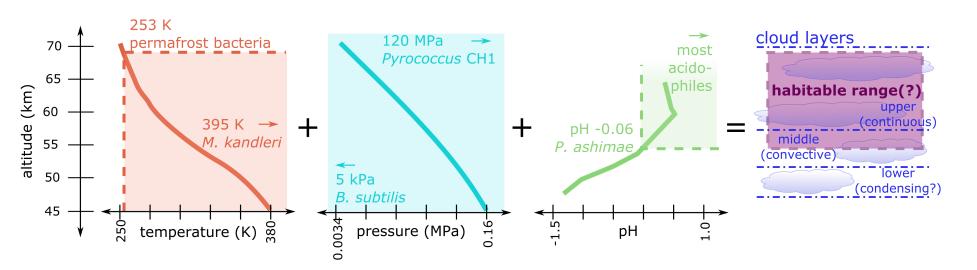

Elements	LIBS peak (nm)	science goal
С	247; 910; 940	composition
Ν	447; 821; 868; 904; 939	composition
Ρ	213; 253	composition
CI	808; 837; 858; 912; 959	composition
Fe	239; 260; 275	composition
Molecules	Raman peak (cm $^{-1}$)	
H_2SO_4	400, 560, 915, 1145, 1360	composition
SO_4^{2-}	451, 613, 974, 1067	acid activity
HSO_4^-	890, 1040, 1200	acid activity
$SO_2/SO/S_2O$	1140-1150	composition
PO_4^{3-} (aq)	415, 554, 936, 1013	acid activity
HPO_4^{2-} (aq)	855, 990, 1083	acid activity
CS_2	656	composition
OCS	517, 870, 1986	composition
S_8 (natural)	153, 220, 473	composition
Moieties	Raman peak (cm $^{-1}$)	
C=C	1520-16004, 1575-1635	organics
C=O	1670-1700	organics
$C \equiv N$	2220	organics
R-C=O	1725-1740	organics

Earth's Aerobiosphere

¹NASA Ames Research Center ²Impossible Sensing

Motivati

Analogue Environments


Earth has no perfect analogue for the Venus clouds, but it has a variety of partial analogues that together cover much of Venus's chemical and physical aerosol properties.

	Venus Haze			Stratospheric
Properties	& Upper Clouds	Sea Spray	Marine Fog	Sulfate Aerosols
location	55-90 km	coastal ($\leq 20 \mathrm{m}$), $\leq 7 \mathrm{m}$ AGL	$\sim 2050\mathrm{m}\mathrm{AGL}$	$\sim 1318\mathrm{km}\mathrm{AGL}$
phase	liquid (?)	liquid, solid	liquid	liquid w/ inclusions
diamator (1100)	0.2 (Mode 1) 0.4–1.0 (Mode 2)	0.04–0.06 (sub-µm)	5-10	$\sim 0.1 - 1.0$
diameter (µm)	0.4–1.0 (Mode 2)	1-10 (coarse)	5-10	/~ 0.1−1.0
	Haze:			
number	~ 50500 (Mode 1)			
density	~ 0.1 –1 (Mode 2)	500–1500 (sub-μm)	80–250	1–100
(cm^{-3})	Upper Cloud:	0.1-1 (coarse)	80-230	1-100
	$\sim 2 imes 10^3$ (Mode 1)			
	~ 50 (Mode 2)			
composition,	75–83 H_2SO_4 ,	H ₂ O	H ₂ O	$60-80 \text{ H}_2\text{SO}_4$
bulk (wt %)	15–25 H ₂ O (?)			40–20 H ₂ O
composition,	$FeCI_3$, H_3PO_4 , NH_3 ,	CI^{-} , Na ⁺ , Mg ⁺² ,	HPO_4^{-2} , HSO_4^{-} , $H_2PO_4^{-}$,	meteoric iron,
trace	$S_2O, S_x, (?)$	Ca^{+2} , HSO4 ^{$-$} , organics, other salts,	NH_4^+ , NO_x^- , organics, 1 other salts,	organics, (?)

Table 2. Venus operational and scientific analogue enviroments available for exploration or validation.

Short-Term Habitability Limits

For $\sim 80\%$ H₂SO₄ aerosols, conditions are within the limits of life for temperature, pressure, radiation, redox and/or photonic energy sources, bioavailable chemistry (CHNOPS), size, and residence time.

However, water activity is far too low for active metabolism (Table 4). A long-term stable aerobiosphere must have a mean generation time shorter than the mean residence time (Figure 1).

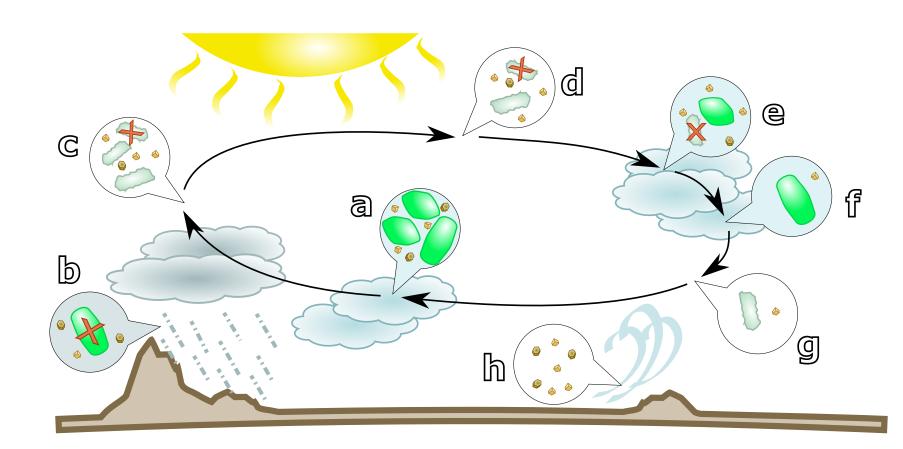


Figure 1. Notional Earth-like aerobiosphere. [a] Microbes accumulate enough nutrients in a warm, wet cloud to divide. Some [b] "rain out"; others [c] dry out and [d] accumulate damage. [e] A few encounter wet conditions, rehydrate, repair, and [f] consume. [g] Hydration cycles repeat until [h] conditions allow division again.

on	
believed to	Venus and Earth represent two
ditions	possible evolutionary paths for
which Earth	rocky worlds with water.
ter, geological	 Under what conditions should
	cloudy worlds be considered
viochemistry	potential habitats?
? Could such	• What are the short- and
the	long-term requirements for a
in the	planetary aerobiosphere?
aze layers?	1 / 1

Long-Term Habitability Limits

Uniquely in atmospheric exploration, the sampling platform defines the rate, density, distribution, and total number of sampled aerosol particles, in turn constraining the sensitivity and sample analysis cadence needed.

Aerosol Sampling Concept descent sonde

glider/dror

variablealtitude balloon stationary balloon

Earth bioaerosols – like most life in extreme conditions – is often inactive and clustered in 'hot spots'. For example, viable microbes in cloud water may have concentrations of 1×10^{-2} – 1×10^{-9} per particle.

Key Questions & Measurements

Key	v in siti
•	Detail
	affect
٠	If com
	Mixin

Table 4. Typical water activities of Earth habitats and barren environments. Venus's aerosols are far below the known microbial growth limit.

D. Smith, S. Waters, A. Cassell, and E. Venkatapathy (NASA ARC); K-L. Jessup and E. Barth (SwRI); K. Mc-Gouldrick (CU).

Technical Considerations

Table 3. Mission concepts spanning sampling regimes.

g	Typical Sam-plingVeloc-ity $(\frac{m}{s})$		Mission Concept Example(s)
	≥ 35	≤ 1	DAVINCI
one	3–5	≥ 24	VAMP, Black Swift UAS
	0.1–1.5	≥ 2 40	VALENTInE, VFM
y	≤ 0.1	≥ 240	Venera-D, VCM

tu measurements:

iled aerosol composition, esp. compounds that water and acid activity (Table 4)

nposition is differentiated by particle size

• Mixing and lofting dynamics, esp. related to water

Phenomenon	a_w
Microbial growth media	0.996
NaCI solubility	0.74
Microbial growth	≤ 0.6
Atacama desert soils	0.01–0.52
$75 \% H_2 SO_4$ solution	0.02

Key supporting questions:

• If microbial reproduction occurs while airborne

• If microbial activity is limited to clouds

• Life cycles, growth rates, and limiting combinations of stressors for airborne microbes

Acknowledgements