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What are surprisingly stationary plumes? But | study Venus, why should | care?
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So what makes these plumes stationary? lithosphere instability event

The lithosphere plays an important role in this process. The initial rising plume head thins

the lithosphere thinning the lithosphere. The concavity in the lithosphere stabilizes the
plume. If we implement a rheology that is only pressure (or depth) dependent, then the
plume stability breaks down much earlier in the calculation.

Geeking out about the details

For those who are interested and/or worry about such things, we use a temperature-

temperatu I’E-dependent depth_dependent dependent rheology with yield strength criterion so that the lithosphere can become

rheolggy ||d rheglogy ||d unstable, overturning and resurfacing. In cases where surprisingly stable plumes form
this doesn’t happen due to the high degree of symmetry in the pattern of plumes. If we

start with a strongly anti-symmetric initial perturbation (e.g., spherical harmonic degree

reference case: lithosphere rheology is temperature-dependent lithosphere rheology is NOT temperature-dependent (102 x ref) 1 or 3), the system evolves into a stagnant/mobile pattern
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: o We also use internal heat sources based on chondritic abundances of elements (e.g.,
| e McDonough and Sun, 1995). While it is likely that LIL elements (including U, Th, and K)
. I e eialf are enriched in the crust, with our limited constraints any enrichment would be a guess.
We also use a thermal evolution model approach to the core thermodynamics to allow
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We use an Arrhenius form of the temperature-dependence and this turns out to be
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= c . L“H\ (King, 2009). The point is that in the Arrhenius form, the lithosphere viscosity is much
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studies. An Arrhenius rheology requires larger stresses to break the lithosphere because

it is so much stronger. 108
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