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What are surprisingly stationary plumes?

So what makes these plumes stationary?

But I study Venus, why should I care?
In many stagnant lid geodynamic models,
when we start from short wavelength
perturbations, the calculations quickly
evolve into a regular, organized, pattern of
plumes, remaining in a stable pattern for > 2
Gyr. This pattern clearly visible in the geoid
and dynamic topography plots on the right.

The calculations are time-dependent and
there are numerous small-scale ‘drips’ from
the lithosphere that complicate identifying
these plumes within the model; however
they are prominent in the geoid because
the plumes are vertical and continuous. The
geoid integrates the temperature (density)
as a function of depth, amplifying
contributions continuous vertical structures-
sort of like stacking in seismic imaging.

The pattern of surprisingly stable plumes
can be represented by spherical harmonic
degree 8 and order 6, a stable configuration
for convection in spherical shells at low
Rayleigh number (e.g., Busse, 1975). The
combination of strong internal heating and
most of the temperature contrast being
sequestered in the stagnant lid makes
internally heated stagnant-lid planets act
more like low-Rayleigh number systems.

The lithosphere plays an important role in this process. The initial rising plume head thins
the lithosphere thinning the lithosphere. The concavity in the lithosphere stabilizes the
plume. If we implement a rheology that is only pressure (or depth) dependent, then the
plume stability breaks down much earlier in the calculation. Geeking out about the details
temperature-dependent 

rheology lid
depth-dependent 

rheology lid

While the fluid dynamic aficionado may remember that for a spherical shell appropriate
for Venus’ mantle, degree 4 is the first unstable mode for temperature-dependent
rheology, it seems that at higher Rayleigh numbers there is a bifurcation to the degree 8
planform. Also, we have not found a study on the stability of strongly internally heated
spherical shells, which is likely more the case for planets. Often stability analyses are
performed with respect to a conductive initial condition which isn’t the most appropriate
stating point for planets, as they accreted hot.

For those who are interested and/or worry about such things, we use a temperature-
dependent rheology with yield strength criterion so that the lithosphere can become
unstable, overturning and resurfacing. In cases where surprisingly stable plumes form
this doesn’t happen due to the high degree of symmetry in the pattern of plumes. If we
start with a strongly anti-symmetric initial perturbation (e.g., spherical harmonic degree
1 or 3), the system evolves into a stagnant/mobile pattern.

We also use internal heat sources based on chondritic abundances of elements (e.g.,
McDonough and Sun, 1995). While it is likely that LIL elements (including U, Th, and K)
are enriched in the crust, with our limited constraints any enrichment would be a guess.
We also use a thermal evolution model approach to the core thermodynamics to allow
for a cooling core boundary condition (King, 2018).

We use an Arrhenius form of the temperature-dependence and this turns out to be
important. In the figure below, the viscosity profile from an Arrhenius viscosity
formulation is shown in black compared with a viscosity profile from a Frank-Kamenetskii
formulation shown in red. The Frank-Kamenetskii parameters are chosen to give the best
match to the Nusselt number and RMS velocity from the Arrhenius viscosity formulation
(King, 2009). The point is that in the Arrhenius form, the lithosphere viscosity is much
larger than the lithosphere viscosity in the corresponding Frank-Kamenetskii form.
Experimental rheology fit lab data to an Arrhenius NOT a Frank-Kamenetskii form. Studies
that use a Frank-Kamenetskii rheology have far more frequent overturns than our
studies. An Arrhenius rheology requires larger stresses to break the lithosphere because
it is so much stronger.

differ significantly. I cannot simultaneously fit
Nusselt number, RMS velocity, geoid and topog-
raphy with both formulations. Again the reasoning
for the large difference in the topography mirrors

the discussion of the truncated and full Arrhenius
formulations above. The Nusselt number and
RMS velocity can be matched with the Arrhenius
and Frank-Kamenetskii formulations because the
difference between the formulations occurs in
the stagnant lid where the velocities are already
approaching zero. However, the topography depends
on the coupling of buoyancy force to the surface;
so for topography, the details of the viscosity
distribution in the stagnant lid are important.

[22] It is interesting to note that the asymmetry in
the topography observed in the Frank-Kamenetskii
calculations, with a significantly larger down-
welling topography than upwelling, is also observed
in the truncated Arrhenius viscosity formulation
and with small viscosity contrasts in the full
Arrhenius formulation.

5. Conclusions

[23] Solutions to the incompressible infinite
Prandtl number convection with large viscosity
variations in the stagnant lid convection regime
using a penalty formulation follow the theoretically
expected convergence with increasing grid resolu-
tion, despite the fact that the resulting matrix
equations are ill conditioned. The difference be-
tween double and quadruple precision calculation

Table 10. Results From Temperature-Dependent Cases in a 1 by 1 Domain With a Frank-Kamenetskii Viscosity
Formulationa

Grid Dh Nusselt Number Vrms <T> TopoL TopoR GeoidL GeoidR

50 ! 50 101 44.15 4857.16 0.508 2052.806 "4109.974 93.065 "118.507
100 ! 100 101 54.11 5604.11 0.509 2201.280 "4324.205 81.451 "107.363
200 ! 200 101 56.19 5559.03 0.508 2288.354 "4328.894 75.819 "99.798
300 ! 300 101 56.22 5550.65 0.508 2291.100 "4328.890 73.274 "97.310
400 ! 400 101 56.18 5547.66 0.508 2285.056 "4328.582 72.038 "96.242
50 ! 50 103 21.20 1645.46 0.710 3323.838 "15469.943 145.804 "473.842
100 ! 100 103 21.37 1580.15 0.700 3314.868 "16364.494 130.695 "471.288
200 ! 200 103 21.38 1565.62 0.699 3260.990 "16608.150 123.462 "468.555
300 ! 300 103 21.38 1562.89 0.698 3248.734 "16649.006 121.865 "467.789
400 ! 400 103 21.38 1561.93 0.698 3244.626 "16661.718 121.291 "467.470
50 ! 50 105 9.57 1039.25 0.806 4730.287 "15879.813 218.831 "620.719
100 ! 100 105 9.55 1017.13 0.805 4554.512 "15973.501 203.210 "608.667
200 ! 200 105 9.55 1011.59 0.805 4511.049 "15979.724 199.206 "604.853
300 ! 300 105 9.55 1010.45 0.805 4504.701 "15980.222 198.527 "604.140
400 ! 400 105 9.55 1010.01 0.805 4502.692 "15979.933 198.297 "603.874
50 ! 50 107 7.60 901.26 0.814 5154.172 "13646.408 246.615 "583.933
100 ! 100 107 7.59 887.15 0.814 4961.793 "13526.946 231.576 "567.515
200 ! 200 107 7.59 883.52 0.814 4916.286 "13486.196 227.957 "562.966
300 ! 300 107 7.59 882.76 0.814 4909.930 "13479.033 227.376 "562.161
400 ! 400 107 7.59 882.46 0.814 4907.906 "13476.312 227.183 "561.872

a
See equation (10). Note that Dh is not the viscosity contrast for these calculations, but is a marker to compare with results from Table 7. The

Frank-Kamenetskii parameters are b = 1.3230 and Ti = 0.0 forDh = 10, b = 6.55 and Ti = 0.7375 forDh = 103, b = 8.80 and Ti = 0.83 forDh = 105,
and b = 9.5 and Ti = 0.855 for Dh = 107. The other parameters are as described in Table 6. These results are compared with the Arrhenius viscosity
formulation results in Table 7.

Figure 2. Viscosity for Arrhenius viscosity formula-
tion (equation (11)) in black with activation energy of
41.58 kJ/mole compared with Frank-Kamenetskii for-
mulation (equation (10)) in red with b = 9.5 and Ti =
0.855. The Frank-Kamenetskii parameters are chosen to
give the best match to the Nusselt number and RMS
velocity from the Arrhenius viscosity formulation. The
other input parameters are taken from Table 6. The flow
diagnostics are reported in Table 10.
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to within 1% of Christensen’s extrapolated results
on the 200 by 200 element grid.

[10] I next turn to the temperature-dependent rhe-
ology benchmark [Blankenbach et al., 1989,
benchmark 2a] on an unit aspect ratio domain,
with free slip boundary conditions, heated from
below and cooled from above. For this problem,
the temperature dependence of viscosity is given
by

hðTÞ ¼ ho exp $bðT $ TiÞ½ &; ð10Þ

where ho = 2.9 ' 1019, T is normalized by DT =
1000.0, b = ln 1000 and Ti = 0.0. The other scaling
parameters are the same as in Table 1. For a
Rayleigh number of 104, the Nusselt number and
RMS velocity for the 50 by 50 grid are within 1–
4% of Christensen’s extrapolated results and the
values of topography and geoid in the corners
differ from Christensen’s extrapolated results by as
much as 10% for topography and 12% for geoid on
the 50 element by 50 element grid (Table 5). As
before, the geoid and topography on a 200 by 200
element grid agree to within 1% of Christensen’s
extrapolated results. In the Blankenbach bench-
mark the viscosity only varies by three orders of
magnitude and the estimated condition number of
the resulting matrix indicates the results should be
accurate to at least three decimal places.

[11] To address the question of larger viscosity
variations, I consider incompressible convection
in a 1 by 1 Cartesian box with temperature and
velocity boundary conditions as in the cases above.
The Rayleigh number, assuming a characteristic

viscosity ho, is 1.0 ' 107 and, the coefficient of
thermal expansion, a, and thermal diffusivity, k,
are constant (Table 6). The viscosity uses an
Arrhenius formulation given by

hðT ;PÞ ¼ ho exp
E( þ PV (

RT
$ E( þ PV (

RTB
;

! "

ð11Þ

where ho is the normalized preexponential viscosity,
h(T,P) is the effective viscosity, T is the temperature,
E* is the activation energy, V* is the activation
volume, TB is the temperature at the bottom
boundary and R is the gas constant. The second
term in the exponential scales the viscosity so that
h(TB) = ho. I vary the activation energy in the
problems herein and the activation volume is
assumed to be zero.

[12] In thinking about the general applicability of
these results to more complex problems that are
often considered today, using variable values for
the coefficient of thermal expansion, a and gravity,
g, modify the buoyancy term in equation (2), which
enters in the right-hand side vector in the resulting
matrix equation. The inclusion of internal heat
sources, H, or variable thermal conductivity, mod-
ify the energy equation (equation (4)) and likewise
does not impact the structure or form of the matrix,
except to the extent that the change in the temper-
ature profile affects the viscosity distribution.

4. Results

[13] I compare steady state solutions for tempera-
ture-dependent convection at a Rayleigh number of

Table 3. Blankenbach et al.’s [1989] Benchmark 1ba

Grid Vrms Nusselt Number TopoL TopoR GeoidL GeoidR

50 193.592 10.546 1482.778 $2014.228 28.846 $33.104
100 193.297 10.539 1467.169 $2008.138 28.034 $32.327
200 193.248 10.536 1462.487 $2005.473 27.789 $32.099
Cext

b 193.214 10.534 1460.986 $2004.205 27.703 $32.016

a
Steady state, 2-D, constant viscosity convection in a 1 by 1 box with Rayleigh number 105 using ConMan.

b
Christensen’s extrapolated values.

Table 4. Blankenbach et al.’s [1989] Benchmark 1ca

Grid Vrms Nusselt Number TopoL TopoR GeoidL GeoidR

50 840.524 21.864 941.607 $1301.980 14.958 $16.678
100 835.606 22.023 945.108 $1290.926 14.109 $15.632
200 834.353 21.981 936.439 $1285.756 13.654 $15.204
Cext

b 833.989 21.997 931.962 $1283.813 13.452 $15.034

a
Steady state, 2-D, constant viscosity convection in a 1 by 1 box with Rayleigh number 106 using ConMan.

b
Christensen’s extrapolated values.
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Why l=8, m=6?

and 12 ! (64 ! 64 ! 64), indicates that our results
are robust.

[72] For cases C1–4 with Ra = 105 and Dh of 1,
10, 30, and 100 (Table 5), the steady state thermal
structure also shows a cubic symmetry (Figures
8g–8i). However, due to the increased Ra, downw-
elling and upwelling plumes are thinner, compared
with those from cases with smaller Ra. We used
equation (47) as the initial condition only for case
C1 with uniform viscosity. In order to preserve the
cubic symmetry of the flow, the steady state
temperature from case C1 is used as an initial
condition for cases C2 and C3, and the steady state
temperature from case C3 is used as initial condi-
tion for case C4 (Table 5). We found that if
equation (47) is used as initial conditions for these
temperature-dependent viscosity with Ra = 105, the
planform with cubic symmetry does not develop
and rather displays a large number of plumes.

[73] Table 8 shows the results from CitcomS for
cases C1–C4 and comparisons with Ratcliff et al.
[1996a] for cases C1–C3. While the results from
CitcomS compares reasonably well with Ratcliff et
al. [1996a], the differences are significantly larger
than those for small Ra cases presented earlier. We
think that the differences are probably caused by
the resolution difference. Ratcliff et al. [1996a]

used the same resolution (i.e., 32, 64, and 128
cells in radial, colatitude, and longitude directions,
respectively) for all their cubic symmetry cases of
different Ra. In addition, Ratcliff et al. [1996a]
used steady state temperature from smaller Ra
cases as initial conditions for higher Ra cases.
We think that cases with Ra = 105 may require
higher resolution. For case C3, we also performed
a resolution study with case C3H of higher reso-
lution (Table 5). For case C3H, the initial temper-
ature was taken from an interpolated temperature
from the steady state temperature of case C3. This
resolution study shows that our results are well
resolved (Table 7).

3.2.2. Thermochemical Convection

[74] An earlier study using CitcomS for thermo-
chemical convection focused on the accuracy of
tracer advection algorithm and conservation of
total composition [McNamara and Zhong, 2004].
Here, we present test calculations that include
additional outputs such as heat flux. For our
thermochemical convection models, a dense layer
with a density corresponding to a buoyancy num-
ber B = 1 is initially placed at the bottom of the
mantle from the CMB to rcomp = 0.775, and there is
no topography at the density interface. The initial

Figure 6. Representative steady state residual temperature dT = T(r, q, f) " hT(r)i for Cases (a) A1, (b) A3, (c) A5,
(d) A6, (e) A7, and (f) A9, where hT(r)i is the horizontally averaged temperature. Blue and yellow isosurfaces are for
dT equal to "0.15 and 0.15, respectively. The red sphere represents the core.
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• mantle dynamics controls Venus’ surface tectonics
• surprisingly stationary plumes inhibit lithosphere overturn
• power in low-degree harmonics of the gravity field (l=3, or

center of mass/center of figure offset) may indicate a prior
lithosphere instability event

• mantle dynamics controls Venus’ volcanism
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• keys to Venus’ evolution may be buried deep in
the mantle
• power in low-degree harmonics of the gravity field (l=3, or

center of mass/center of figure offset) may indicate a prior
lithosphere instability event


