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need for such technology in order to enable future missions to explore -
v &Y P SEIEC".'VeIV grown on the cathode of Figure 3: Diode Thermal/Electrical Results Figure 4: Triode Electrical Results
enus. a device. * Anode-cathode spacing of 35 microns e Constant current of 10 nA applied between anode and
A h  |-E characteristics measured in vacuum from RT to cathode while measuring the anode voltage
pprOaC 620°C  @Gate voltage swept from 0 to 140V at RT in vacuum
* Turn on E-field of ~4.6 V/um for 1 mA/cm? current * Vanode / Vaate = -2 2 suggests effective gating
* Field emission based device density (A=5.0x10° cm?) e “Operating Region” of device implies triode
* Emission 2 weak temperature dependence characteristics with very low leakage current
* Low power =2 no filament to heat  Red dashed line is the zero-current offset of the SMU
e Radiation hard =2 no semiconductors; active
region is vacuum OR Gate B
e Carbon nanotube electron emitters — — voltage 1 8 — Figure 5: (Left) CNT diodes operating as an OR gate. Here, a
e Wide operating range (20K — 900K) e 250V input signal was applied at A and/or B and the
e Redundancy: many emitters = device longevity o 7 1 T 1T oo A B |Out resulting output measured across a 1 kQ resistor. For each
e Large current carrying ability . _ _ . | - 000 input, a 250V signal corresponded to a digital “1” while a
e Fabrication Figure 2: (Left) Cross section and (Right) top-down - | 0l1l1 zero voltage represented a logical “0”. On the output, a
 Robust materials: quartz, Ti, Ni, CNTs sc.hematlc ?f the_ CNT-based. field emission dewcg In a § 150002 s § a0l voltage of 1.25 mV (or higher) was considered a logical “1”
+ Scalable and compatible with ICs triode configuration. The entire device can be fabricated 2 s and zero voltage was again a logical “0”. The resulting truth
. . on a S|ng|e SUbStrate mak|ng It COmpathle W|th Standard 1.00E+02 L DOE-03 111 table iS Shown and indicates appropriate OR gate behavior_
Fabr|cat|0n microelectronic processing methods. B B This test was conducted in vacuum and the temperature
o o was ramped from RT to 400°C without a change in
1. RIE Etch of Quartz Substrate Evaporation of 30 nm Cr and 200 nm Au on quartz substrate - — I S . L IR operating characteristics.
— o Optical lithography and wet etch to form vias in Cr/Au layer Time
e e e Electroplate ¥3 um Ni to form RIE etch mask
e RIE etch to form ~35 um deep trenches; mask removal cu rrent Cha I Ienges
« HF wet etch to smooth trench floor and sidewalls
2. Electrode Lithography + Gate Formation _
_ | « Lithography to form gate electrode pattern
45° angled evaporation
T N « Mount in evaporator at 45° to metal source
| e« Deposit 500 nm Ti; lift-off unwanted metal
4. Cathode Formation
Resist _ Cate 45° angled evaporation « Lithography to form anode / cathode pattern -
e « Deposit 100 nm Ti followed by 5 nm of Ni catalyst at 45° angle Sidewall & |
B R Figure 6: (Above) CNT diode operating as a half wave
S Pl PRt ' rectifier. Here, a 100 kHz input signal with a 250V peak-to-
« Rotate substrate 180°; return to evaporator at 45° to metal source Figure 7: Current technical challenges peak amp.lltude riding on a 250V DC offset Yvas used. The
5 £ 700 nm Ti to form anode and cover Ni layer . Gate-to-anode shorting > caused by lithographic errors and DC offset is needed to ensure that the CNT diode would be
. eposi -to- : ) ) : 1
e - CNT growth from exposed Ni catalyst a electrode edges just below it's turn (?n voltage. This aIIo.ws the 100 kHz,
»  Lift-off unwanted metal in acetone . . . . 250V peak-to-peak signal to cycle the diode. The output
* Improving gate effectiveness = must be in close proximity to .
: . ) current from the rectifier was then sent to a current
cathode without causing shorts or generating too much leakage e . . .
current amplifier where it was amplified at 20 pA/V. The resulting
- Thermal CVD to only grow CNTs laterally from sidewall e Metal continuity from top surface to trench sidewall = reduce voltage was then returned to the oscilloscope (light blue
 Tilayer prevents CNT growth from underlying Ni trench width to facilitate easier lithography; thicken metal trace) to be displayed and compared to the input signal.
, _ , ’ These results indicate that the CNT diode half-wave rectifier
« Alternative gate locations shown in yellow

functions properly.
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