
PYTHON FOR PLANETARY DATA ANALYSIS.  J.R. Laura, T. M. Hare, L.R. Gaddis, R.L. Fergason, 
Astrogeology Science Center, U.S. Geological Survey, 2255 North Gemini Drive, Flagstaff, AZ, 86001, 
jlaura@usgs.gov.

Introduction:  Following our earlier publication on
this topic [1], we continue to see increased utilization
of the Python programming language by the planetary
science community. A cursory search of the LPSC
abstract archives shows a small, yet increasing number
of abstracts explicitly making mention of access to
underlying libraries via Python [e.g., 2, 3], the
development of data processing capabilities within
Python [e.g., 4-8], or the development of analytic
solutions [e.g., 9-14]. These abstracts offer concrete
examples of Python usage for processing and working
with planetary data. We attribute this increase to the
ease of use, readability, and portability of Python [1] as
a scientific computing language. Python is commonly
applied to High Performance Computing tasks and in
the prototyping and development of Graphical User
Interfaces, in continuing to leverage legacy code bases.
This abstract reports our efforts to continue to integrate
Python into our workflows and highlights additional
use cases of potential benefit across the planetary
science community. 

High Performance Computing: Planetary data
volumes are increasing rapidly due to increased data
acquisition efforts associated with recent and new
missions, improved spatial, temporal, and radiometric
sensor resolutions, and increasingly complex process
models generating ever increasing derived products
[e.g., 15]. At current and future data sizes, tractable
analysis requires either quantitative, repeatable
methods of data reduction or the utilization of High
Performance Computing (HPC) resources. Since the
publication of the Atkins report [16], considerable
research effort and funding has been invested in the
development of Cyber Infrastructure (CI) projects.
This suggests that the larger research community has
avoided large-scale reduction and embraced HPC
utilization. CI is the multi-tiered integration of HPC
hardware embodied by distributed computing
resources, “Big Data” sets, scalable processing
capability, and collaborative, cross-domain research
teams. Within the context of CI, Python is ideally
suited to support the development of scalable high
performance algorithms and the deployment of tools to
reduce the complexity of HPC utilization that is within
the CI middleware layer[22].

At USGS Astrogeology, we have utilized Python
for the automated generation and submission of HPC
jobs (e.g., Portable Batch System scripts) for the
creation of Mars Odyssey Thermal Emission Imaging
System (THEMIS) derived imagery [23] and the

creation of rendered and animated 3D flyovers, as a
full stack development environment to create RESTful
services to expose underlying computational libraries
through web based interfaces [18], and in utilizing
HPC resources through the IPython notebook interface
for proof-of-concept exploratory, big data analysis of
the Kaguya Spectral Profiler data set [e.g., 19].
Scripted job submission has provided an easy-to-use
interface for requesting and using HPC resources as if
they are a local computer script. The development of a
RESTful web interface to an analytical library provides
the capability to hide the utilization of HPC resources
from the end user, significantly reducing complexity.
Finally, the use of IPython notebooks and a computing
cluster for many-core exploratory data analysis has
provided an ideal interactive environment for the
development of metrics for use in larger scale
automated analysis methods1. 

For the development of parallel, scalable
algorithms Python offers three primary tools. First, the
built-in multiprocessing module is ideal for Symmetric
Multiprocessing (SMP) machines (e.g., desktop
computers) where a single shared memory space is
advantageous. This type of parallel computation is
often used when processing large raster datasets.
Second, vectorization, supported by the Numerical
Python (NumPy) library, provides significant speedups
for vector or matrix based computation. Image and
spectral data processing are primary applications of
this type of serial performance improvement technique.
Finally, The Message Passing Interface (MPI) for
Python (mpi4py) package offers Python native access
to the MPI standard. More complex parallelization
efforts, such as spatially constrained optimization, can
significantly benefit from higher levels of
communication across a highly distributed system. 

We continue to identify use cases for high
performance data storage formats, such as use of the
Hierarchal Data Format (HDF5) for the storage of
photogrammetric control networks and complex model
output such as the multilayered thermal-diffusion
model (KRC model [17]). In conjunction with Pandas,
a Python library originally developed for robust big
data quantitative financial analysis, there have been
significant data storage reductions (due to
co mp r e ss i on ) a n d a n a ly t i c a l pe r f o rm a nc e
improvements (due to robust underlying algorithms).
Future work will focus on providing concurrent access

1 See http://tinyurl.com/q76qkod for an example
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to these data structures in HPC environments for
scalability testing. 

Legacy Code Bases: The redevelopment of an
existing code base in a new language can be a costly,
ill-advised endeavor due to the aggregate time already
invested in the original development and the difficulty
in regression testing between implementations. To that
end, f2py and the Python native CTypes libraries
provide two invaluable tools for wrapping legacy
Fortran and C code, respectively. While the complexity
of the wrapping scales with the complexity of the
underlying code, we note that most Fortran subroutines
are immediately wrappable with simply the definition
of a few variable types. Likewise, wrapping of a C (or
C++) library requires minimal additional development.
Assuming that a complex legacy system can be split
into smaller components, code portability can be
readily realized. The additional development can be
focused external to the algorithm logic, helping to
reduce the potential to introduce bugs.

While f2py and CTypes frequently find application
working with legacy systems, significant benefit can
be realized with actively developed code bases. In the
context of an HPC system, the ability to write and
wrap small algorithm components in low level, high
performance languages, while still maintaining rapid
development via a higher level language is essential.
This is primary reason why Fortran, C, and Python are
considered dominant HPC languages. In practice, we
most frequently apply this approach when performing
a sequential operation for which vectorization is
unsuited.

IPython / Jupyter: The IPython project [20],
recently renamed to Jupyter, is composed of a local,
lightweight web server and browser-based interface
which allows for development, inline images, and
LaTeX or MarkDown structured mathematics. In
addition to Python, IPython also supports other
environments and languages, for example Julia,
Haskell, Cython, R, Octave (a MatLab alternative),
Bash, Perl, and Ruby. We find extensive application of
IPython notebooks for exploratory data analysis in the
context of model development and validation, local
and remote data access testing, for example in reading
complex binary data structures, GUI development
where an interactive window is spawned from within a
web browser, interfacing with our HPC resources, and
finally portability of analytical methods and results to
collaborators. For this final use case, shipment of a
single, Javascript Object Notation (JSON) file and any
supplemental data files, e.g. Planetary Data System

(PDS) image file, is all that is required for complete
reproducibility. Each instance of an IPython notebook
is run local to a single desktop computer and the new
Jupyter project offers the ability to run a single access
server to a distributed set of users. 

Graphical User Interface Development: Python
provides an ideal platform for the development of high
end Graphic User Interfaces (GUIs), as well as stand-
alone visualizations.  Libraries such as PyQt, PySide,
WxPython, and Tkinter offer access to robust GUI
development libraries.  At USGS Astrogeology, we
have developed multiple cross-platform, stand-alone
GUI interfaces in pure Python using PySide to call the
Qt4 library.  These tools are rapid to develop, robust to
maintain, and relatively straight-forward to deploy.

Conclusion: Use of Python for scientific
computing and data processing in planetary science is
well underway.  While research projects at USGS are
now using Python tools, the tools generally are not
made public for more general use.  We are currently
exploring ways to integrate both existing and new
Python software into the USGS Astrogeology ISIS
software [e.g., 21 and references therein] so that more
general planetary applications can be realized.
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