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Introduction:  The Moon has been extensively 

studied over the centuries and with growing 

technological advances we are able to gather never 

before seen detail of the Moon’s surface, composition, 

and surface age. Impact craters constellating the lunar 

surface are the most abundant geological feature and 

have been used as a tool to map and date the geological 

events that have shaped the surface. 

Over the last 60 years, researchers have used impact 

crater densities as a quantitative method to compute 

model ages of the surface [1]. This method works on the 

premise that differing crater densities indicate relative 

ages of the surface; the more craters, the older the 

surface. Crater counting becomes an absolute 

chronometer when calibrated through the radiometric 

ages of collected lunar samples. The continued use of 

this method is dependent on the ability to count and 

accurately measure the size of impact craters. This is 

made possible through the vast amount of high-

resolution imagery (e.g. Narrow-Angle Camera, NAC 

images at 0.5-2m/px) via the Lunar Reconnaissance 

Orbiter Camera (LROC) [2]. 

On the Moon, craters smaller than 1km in diameter 

number in the tens of millions. Crater density in this size 

range, on a particular geological unit, is dependent on 

the age of the surface, subsequent resurfacing processes, 

erosion, potential contamination of secondary craters, 

and the rheology of the surface [3]. It has been shown 

that the latter parameter affects the final size of an 

impact crater for a constant impactor size [3]. Thus, the 

analysis of the spatial distribution of small impact 

craters across the lunar surface constitutes a powerful 

tool to derive model ages of the surface and its physical 

properties. However, as impact crater frequencies 

evolves as a power law, the ability to count and measure 

smaller craters in a timely manner is limited to small 

areas when using a manual counting method.  

In previous studies [4,5], we presented the 

development and subsequent improvement of a Crater 

Detection Algorithm (CDA), which uses a 

Convolutional Neural Network (CNN) to detect craters 

on georeferenced Martian images capable of delivering 

meaningful surface model ages. One advantage in 

automating crater detections is the reproducibility of the 

results and limiting the variability of crater counts 

compared to hand-marked crater identification [6]. 

Adapting the network to the detection of lunar 

impact craters down to 15m in diameter using LROC-

NAC images would therefore provide an invaluable tool 

to map and date the surface at an ultimate resolution. 

 

Method: The CDA is a machine-learning-based 

Convolutional Neural Network (CNN) using You Only 

Look Once version 3 (YOLOv3) as its architecture [7], 

originally trained on the detection of Martian impact 

craters on different imagery dataset [4,5]. For the 

purpose of our study, a retraining of the network is 

necessary to achieve acceptable recall and precision as 

well as estimation of crater size. 

To train the CDA, we prepared a dataset of 188 tiled 

NAC images (416x416 pixels) covering two major lunar 

terrains (mare and highlands). The training dataset 

consists of 25,973 manually marked craters using 

Yolo_Mark [8]. To ensure consistent results, all the 

training images have incidence angles ranging from 65-

75° (afternoon/morning lighting) which produces 

favourable shadows when identifying impact structures. 

The training dataset was then augmented by 

applying a range of transformations (rotate, shear, scale, 

and translate) usingYOLOv3; using 75% of the image 

tiles for training, and keeping the remaining 25% for 

validation. Once the  pre-determined amount of training 

iterations was complete, the obtained model was applied 

to the georeferenced image dataset.  

The first step of lunar image georeferencing is done 

through the US Geological Survey’s Integrated 

Software for Imagers and Spectrometers v3 (ISIS3) [9], 

then converted into the correct GeoTiff format using 

GDAL scripts. The GeoTiff image was broken up into 

tiles (416x416 pixels) and the CDA was run on each tile. 

The algorithm then combines all detections into a single 

file containing detection coordinates and size. From raw 

images to detected impact craters, the processing of 

thousands of single, or mosaicked, NAC images may 

take up to a day to get millions of detections using high-

performance computing. 
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Model evaluation: We applied the trained CDA to 

two NAC images covering both highland and mare 

surfaces (M1320016983L & M1338833866L). To evaluate 

the model we manually mapped impact craters larger 

than 5m in diameter across a 1.5km2 subsection of the 

NAC images, resulting in 3165 craters. This crater 

population was used to evaluate the accuracy of the 

model in terms of true-positive (TP), false-negative 

(FN), and false-positive (FP) detection rates, but also 

the precision in the diameter estimation of the true 

positive detections (Table 1). We found that our model 

produces excellent detection rates (TP>80%) for 

D>15m (~15px in diameter) and the error in the 

detection diameter is less than 10% of the manual 

counterpart (Table 1). For craters larger than 100m in 

diameter, we also evaluated the accuracy of the model 

based on their crater degradation state. Very degraded, 

rimless, impact craters (bottom 3 lines on Table 1) are 

poorly detected by the CDA (TP<50%), while detection 

rates and errors associated with fresh or intermediate 

degradation state craters are acceptable. 

Conclusions: Detections obtained through the CDA 

can be used as a mapping tool to visualise the spatial 

variations of crater densities, thus allowing to discern 

structural boundaries of geological units. This includes 

the identification of high-density areas of small craters 

(Figure 1), which is potentially from a secondary origin. 

While low cratering density could indicate recent 

geological activity, potential deviation from the 

theoretical production function due to the regolith 

thickness, or other physical properties of the impacted 

surface. Overall, the ability to detect 1000s of small 

craters accurately and quickly gives the CDA 

unparalleled detail in fine-scale mapping of the lunar 

surface. 

 
Figure 1: A) Subsection of a LROC-WAC image of the 

Gruithuisen Domes (NAC_ROI_GRUITHSNLOA); B) 

impact crater density map made using CDA detection 

(124,312 craters), legend displays the impact crater 

density per pixel (note: each pixel is 0.05 of a degree). 

 

Table 1: Confusion matrix comparing the CDA 

detection against manually mapped craters across 

different diameter range and degradation state over a 

Highland terrain (M1338833866L). Note: positive (+) 

diameter estimations indicate the CDA overestimated 

the diameter, while negative (-) indicates an 

underestimation. ‘*’ = TP/FN/FP rates are not 

representative, due to very small sample sizes (n=<10). 
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