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Introduction:  Since the discovery of water in lu-

nar soil samples [1], there has been an explosion in 
research on the new field of lunar water.  We have 
been analyzing water, D/H, and other volatile elements 
in Apollo rock samples since 2009, and have now con-
ducted thousands of analyses, using SIMS spot anal-
yses, SCAPS ion image analyses, FEG-EPMA, FEG 
WDS Kα mapping, FEG-EDS, and micro-Raman 
spectroscopy in high titanium mare basalts, low titani-
um mare basalts, Al-basalts, KREEP basalts and high-
land rocks.  This extensive analysis of Apollo rock 
samples allows us to understand the history and distri-
bution of volatiles in lunar samples that cannot be at-
tained by studying lunar soil samples alone.   

High Titanium Basalts:  We have now found 
abundant evidence for volatile-rich and water-rich 
glasses and melt inclusions in high-titanium basalts [2-
4].  We have also found evidence for a change to more 
oxidizing conditions in the high-titanium basalts upon 
emplacement near the lunar surface, wherein we find 
Fe metal becoming oxidized to form hercynite 
(FeAl2O4).  We have also found a new lunar volatile 
mineral, with the preliminary name of Ce-Chlor-
Britholite, that crystallizes after apatite in slowly-
cooled high titanium basalts.  That this mineral crystal-
lizes after apatite, and is F-,Cl-rich, shows that apatite 
crystallization did not deplete the melt in fluorine, as 
predicted by the Lunar Apatite Paradox model [5].  We 
predict that all high-titanium basalts were similarly 
enriched in volatile elements.  We will present results 
that demonstrate that some high-titanium basalts have 
only an order of magnitude depletion in H2O relative to 
terrestrial magmas.  If high-titanium magmas under-
went significant degassing [6], then this would predict 
at least earth-like levels of water, and possibly higher. 

Low Titanium Basalts:  The low-titanium basalts 
have proven especially fruitful for disentangling the 
D/H history of lunar magmas.  We will present the 
results of a comprehensive and cohesive model to ex-
plain D/H systematics of the Moon.  This model indi-
cates a high D/H for the lunar mantle, as originally 
found by [7]. 

 According to the Lunar Apatite Paradox mod-
el, OH-rich apatites are due to low overall volatile el-
ement contents of lunar magmas.  OH-rich apatites are 
only found in low-titanium basalts, suggesting overall 

lower volatile contents for low-titanium basalts relative 
to high-titanium basalts.  Conversely, chromite-hosted 
melt inclusions have high F and Cl abundances [8], 
suggesting that water behavior may be decoupled from 
F and Cl in these magmas, and especially during their 
subsolidus history [9]. 

KREEP basalts:  We have found the most Cl-rich 
extraterrestrial glasses in KREEP basalts 15382 and 
15386, with up to 1000 ppm Cl [10].  Comparison of 
volatile/refractory elements such as F/Nd and Cl/Nb of 
KREEP basalts, shows an order of magnitude deple-
tion in F and double that in chlorine relative to the 
Earth (Fig. 1).  All lunar samples analyzed for F and Cl 
thus far, including 74220 water-rich olivine hosted 
melt inclusions, show a similar relationship (Fig. 1).   

Summary:  Comprehensive analyses of volatile el-
ement distributions in Apollo rock samples since 2009 
have finally unveiled the history of lunar volatiles and 
the origins of the Moon’s water.  High D/H of the lu-
nar mantle is still best explained as delivery of come-
tary water to the Moon after the Giant Impact.   
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Figure 1. Cl/Nb vs. F/Nd of the Moon, Earth, and CI. 
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