CRAIG O'NEILL

GEODYNAMIC EVOLUTION OF MERCURYTYPE PLANETS

MERCURY IN A
GALACTIC CONTEXT

- galactic chemical EVOLUTION TRENDS SUGGEST MOST RECENTLY FORMED PLANETS ARE MORE MERCURY-LIKE

Galactic Time (Gyr)

- Lower total
. CONCENTRATIONS OF HPES (TOP)
- lower si/fe ratios . INCREASEDTYPE II SUPERNOVA
- Larger cores and GRAVITY (MIDDLE, CALCULATED USING MINERAL PHYSICS SOLVER BURNMAN: EARTH PARAMETERS SHOWN AS MAGENTA CROSS).
- MERCURY bUCKS THE trend in solar SYSTEM HPES
- VESTA REPRESENTED FROM HED METEORITES, C-TYPE FOR CERES.
- GENERAL VOLATILITY

TREND IN KIU, EXCEPT FOR MERCURY UNCLEAR WHY

THERMAL EVOLUTION OF MERCURY-TYPE PLANETS

- larger core planets tend to have HOTTER INTERNAL TEMPERATURES

LARGER CORE PLANETS HAVE HOTTER CORES (IN GENERAL) AND - INITIALIY. STRONG MAGNETIC FIELD GENERATION
2. WITH TECTONICS, THOUGH, THEY

CANNOT MAINTAIN CMB HEAT FLUX, AND MAGNETIC FIELDS CEASE

- THERE IS AN OPTIMAL CORE:PLANET SIZE THAT PERMITSLONG-LIVED HOT GEODYNAMO ACTION, AND TECTONICS TO FACILITATE CMB'HEAT FLOW, AND STRONG CONVECTION.
- BIG UNKNOWNS ARE COMPOSITION - S IN CORE (+ OTHER LIGHT ELEMENTS) AND K IN MANTLE.
PARAMETERISED RESULTS - CORE EVOLUTION
- THIS IMPEDES THEIR ABILITY TO GENERATE TECTONICS

