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Vertical dikes imply propagation
through a stress regime where 
the least principal stress is horizontal.

Thrust faults imply propagation
through a stress regime where 
the least principal stress is vertical.

Earth analogues and models [1] show that
dikes can propagate finite distances in 
horizontally compressive stress regimes.

Smooth Plains emplacement could happen
in the context of global contraction with magma
sources between 3 and 27 km.
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Global contraction should result in
horizontally compressive stresses that
limit vertical dike propagation, effectively 
closing off pathways for magma to make it 
to the surface.
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Visual Abstract

Stress Context
Effusive Volcanism Sh < SH < Sv or possibly Sh < Sv < SH
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Vertical dikes with strikes 
perpindicular to SH 

Normal faults, graben, or
rifts with strikes 

perpindicular to Sh

Vertical dikes with strikes 
at a steep angle to Sh

*not necessarily 30 to SH

Effusive volcanism should result from
minimum horizontal compressive stresses that, 
if paired with maximum vertical compressive
stresses, also result in normal faulting.
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“Zobackogram” [2] and Frictional Faulting Theory
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This diagram plots the equations 
from FFT as lines. These equations
are true when structures are
observed. For example, if we 
neglect pore pressure:

SH =    ( μ  + 1 + μ)√ 2 2

Sv

holds true when thrust or reverse 
faults are observed. If μ = 0.6, 
then SH = 3.1Sv and the differential
stress is 2.1Sv.

If tensile cracks are observed,  

SH = 3Sh - 2 Pp  or   SH = 3Sh

Observations then imply that:
SH >> Sh > Sv

so dikes must be propagating
in a compressive stress regime.
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Dike Propagation in 
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d, distance of propagation 
before rotation into sill
Ts, Tensile strength 8 - 14 MPa *3 MPa for heavily 

fractured basalt [12]

, Density difference ~0.150 kg/m3

, Differential Stress 20 - 100’s of MPa
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Menand et al. [1] modeled the path of dike propagation in a compressive stress
regime by increasing the horizontal stresses in gelatin injected with air. They 
derived an emperical equation for the distance a dike can propagate before 
rotating over into a sill.

Personal field photos showing
large scale deformation of basalt,
including dipping units and
rotated columns. 

Most dikes can travel ~15 km, the
suggested depth from the magma
source of the CRBs [12].

Using the same equation, 
and differential stresses
of 2.1Sv, dikes on
Mercury are capable of
propagating:
   ~27 km when the 
     bedrock is mostly 
     intact.
   ~3.5 km when the
    bedrock is heavily 
    fractured.
The smooth plains can 
be emplaced during 
global contraction.

Data [12]
mod. from 

Taubeneck field notes

Thrust fault
related landforms
near 61 N, 45 W.

Volcanically emplaced units with mafic 
presumed basaltic composition [4].

Volcanically emplaced units with varying
basaltic compositions.

Emplacement through multiple epsidodes of 
effusive volcanism over a geologically “short”
period of time (100 Ma) [5, 11].

Thrust fault related landforms propagate through
plains units, representing post or syn-volcanic
tectonics [10].

Thrust faults and folds propagate through
CRBs, representing pre, post, and syn-volcanic
tectonics [9].

Emplacement through multiple epsidodes of 
effusive volcanism from 16.8 Ma - 5 Ma [6].

Effusive deposits are relatively thick (~4km) and
laterally extensive (200,000 km ) [8].2

Effusive deposits are relatively thick (~ 0-2 km) 
and laterally extensive (5.59 x 10  km  ) [5,7].2
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