Material properties and analysis of impact-induced porosity in the Santiago Papasquiero meteorite Amanda Alexander^{1,2}, Simone Marchi¹, Adrian Gestos², Sidney Chocron³; ¹Southwest Research Institute, Boulder CO 80301, ²University of Colorado Boulder, Boulder CO 80309 ³Southwest Research Institute, San Antonio TX ## **Introduction:** The selection and upcoming launch of the NASA *Psyche* mission resulted in piqued interest in cratering of metal-rich materials. As Asteroid (16) Psyche is thought to be made predominantly of metal [1-4], a suite of hypervelocity impact experiments were conducted at the NASA Ames Vertical Gun Range facility [5]. In this work, we focus on the impact experiments that were performed into samples of Santiago Papasquiero [6], an anomalous ataxite, at impact velocities ranging from 2-6 km/s at various temperatures. An unexpected observation from these experiments was extensive cracking through the meteorite volume as a result of the hypervelocity impact. As such, we focus on quantifying and understanding the formation of cracks within Santiago Papasquiero through physical analysis and numerical modeling. Post-impact *in situ* analysis has been performed via x-ray computed tomography (XCT) at the Materials Instrumentation and Multimodal Imaging Core (MIMIC) Facility at the University of Colorado Boulder. We present three-dimensional renderings of an impacted cube of Santiago Papasquiaro meteorite material. The XCT data were then processed using Dragonfly [7], a scientific imaging software in which inter-connected crack volumes are extracted and computed. We find that approximately 2-3% bulk porosity was introduced to the Santiago Papasquiero meteorite following a single ~5 km/s impact. In order to numerically simulate the impact experiments, material-specific parameters are required to model the shock-response. Here, we present results from compression, tensile and torsion tests on the Santiago Papasqueiro meteorite which are used in the Johnson and Cook (JC) Strength and Failure models [8-9] to numerically model impacts using iSALE and CTH shock physics softwares. These tests were performed at 77 K and extrapolated through room temperature, making them relevant and useful for a variety of scientific applications — namely, in studying the effects of hypervelocity impacts into Main Belt and Near Earth metal-rich asteroids. Finally, we attempt to model the hypervelocity impact scenario into the Santiago Papasquiero meteorite using the empirically-derived JC parameters in CTH [10] and iSALE [11-13] shock physics codes. We compare the porosity which is introduced via hypervelocity impact event and find that the current material parameters and impact conditions are not sufficient in reproducing the \sim 2-3% porosity. As such, we explore additional mechanisms or causes for this discrepancy. In particular, we investigate the effect of one or more silicate inclusions within the volume of the target body. ## **References:** [1] J. Hanuš et al. (2017) Astronomy & Astrophysics, 601, A114. [2] A. Matter et al. (2013) Icarus, 226, 419. [3] J. Bell. (1989) Asteroids II, 921. [4] L. Elkins-Tanton. (2017) LPS XLVIII, Abstract #1718. [5] S. Marchi et al. (2020) Journal of Geophysical Research (Planets), 125, e05927. [6] Buchwald, Vagn F. (1975) Handbook of Iron Meteorites. University of California Press, 1418 pp. [7] Dragonfly 2020.2 [Computer software]. Object Research Systems (ORS) Inc, Montreal, Canada, 2020; software available at http://www.theobjects.com/dragonfly. [8] G.R. Johnson and W.H. Cook. (1983) Proceedings 7th International Symposium on Ballistics, 1983, 541-547. [9] G.R. Johnson and W.H. Cook. (1985) Engineering fracture mechanics 21, no. 1, 31-48. [10] J.M. McGlaun et al. (1990) International Journal of Impact Engineering, 10, 1-4, pp. 351-360. [11] A. Amsden et al. (1980) Los Alamos National Laboratories Report, LA-8095:101p. [12] G. Collins et al. (2004) Meteoritics and Planetary Science, 39, 217. [13] K. Wünnemann et al. (2006) Icarus 180, 514.