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Introduction: The Askival sample is a geochemically and texturally unique sample investigated by the Curiosity 

rover in Gale crater. Located at the Bressay site and analyzed between mission sols 2015 to 2021, Askival has a 

feldspathic cumulate texture, but presents geochemical evidence of aqueous alteration beyond initial crystallization 

and accumulation. An earlier target, Bindi, provides an important comparative sample as it also appears to be a feld-

spathic cumulate but lacks the alteration present in Askival. 

Methods:  Geochemical analysis of Askival and Bindi was performed using the Chemistry and Camera (Chem-

Cam) instrument on the MSL Curiosity rover [1]. ChemCam is a laser induced breakdown spectrometer (LIBS) in-

strument that performs geochemical remote sensing on targets up to 7 m away from the rover. LIBS analyses occur 

by creating an energized plasma at a micron-scale point on the target rock, allowing for sampling of different phases 

within coarse-grained targets such as Askival. Supporting imagery from the ChemCam remote micro-imager (RMI) 

allows these chemical analyses to be correlated with visual identification of different phases. 

Further geochemical analysis of Askival using the Alpha-Particle X-Ray Spectrometer (APXS) [2] and images 

from the Mars Hand Lens Imager (MAHLI) [3] provide complementary datasets. 

Results & Analysis: Texturally, Askival has strong resemblance to feldspar cumulate samples, with roughly 65% 

of the sample consisting of light-toned, subhedral crystals with some examples of elongation. This phase is separated 

and, in some cases, enclosed by a fine-grained darker matrix, which comprises approximately 30% of the sample. The 

remaining texture is comprised of a fibrous grey/brown phase that occurs only in a couple of visible areas of the 

sample, as well as a secondary light-toned phase observed as small veins occupying interstitial areas.  

Geochemically, the primary light-toned phase has a range of compositions which form a linear trend away from 

stoichiometric feldspar composition. The most prominent chemical divergence is an enrichment in silica, with some 

of the sampled LIBS points containing >80% SiO2. This enrichment correlates with a detected increase in H, and a 

decrease in alkali elements and enrichment in Mg. This is consistent with the production of a leached layer and pre-

cipitation of secondary Mg-phyllosilicates under low temperature acidic conditions [4]. Other rocks located at Bressay 

do not show similar alteration, and are not of the same cumulate origin, indicating either a diversity of sources within 

a single locality or that Bressay has a collection of samples that have undergone different transportation pathways. 

The secondary phase presents a diverse mafic composition, indicating multiple mineral endmembers contributing 

to the phase that are not visibly distinguished in the RMI imagery. Normative calculations support a composition made 

of Fe/Mg silicates including pyroxenes and amphibole, supporting a model of formation under an upper crustal setting. 
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