ANALYSIS OF "STONE" SAMPLES FROM C-TYPE ASTEROID RYUGU.

T. Nakamura¹, M. Matsumoto¹, K. Amano¹, Y. Enokido¹, M. Zolensky², T. Mikouchi³, H. Genda⁴, S. Tanaka^{5,6}, M. Y. Zolotov⁷, K. Kurosawa⁸, S. Wakita⁹, R. Hyodo⁵, H. Nagano¹⁰, D. Nakashima¹, Y. Takahashi³, Y. Fujioka¹, M. Kikuiri¹, E. Kagawa¹, M. Matsuoka¹¹, A. J. Brearley¹², A. Tsuchiyama^{13,14,15}, M. Uesugi¹⁶, J. Matsuno¹³, Y. Kimura¹⁷, M. Sato³, R. E. Milliken¹⁸, E. Tatsumi^{19,3}, S. Sugita^{3,8}, T. Hiroi¹⁸, K. Kitazato²⁰, D. Brownlee²¹, D. J. Joswiak²¹, M. Takahashi¹, K. Ninomiya²², T. Takahashi^{23,3}, T. Osawa²⁴, K. Terada²⁵, F. E. Brenker²⁶, B. J. Tkalcec²⁶, L. Vincze²⁷, R. Brunetto²⁸, A. Aléon-Toppani²⁸, Q. Chan²⁹, M. Roskosz³⁰, J.-C. Viennet³⁰, P. Beck³¹, E. Alp³², T. Michikami³³, Y. Nagaashi³⁴, T. Tsuji³⁵, Y. Ino^{36,5}, J. Martinez², J. Han³⁷, A. Dolocan³⁸, R. J. Bodnar³⁹, M. Tanaka⁴⁰, H. Yoshida³, K. Sugiyama⁴¹, A. J. King⁴², K. Fukushi⁴³, H. Suga¹⁶, S. Yamashita ^{6,44}, T. Kawai³, K. Inoue⁴³, A. Nakato⁵, T. Noguchi⁴⁵, F. Vilas⁴⁶, A. R. Hendrix⁴⁷, C. Jaramillo⁴⁸, D. L. Domingue⁴⁶, G. Dominguez⁴⁹, Z. Gainsforth⁵⁰, C. Engrand⁵¹, J. Duprat³⁰, S. S. Russell⁴², E. Bonato⁵², C. Ma⁵³, T. Kawamoto⁵⁴, H. Yurimoto⁵⁵, R. Okazaki⁴⁵, H. Yabuta⁵⁶, H. Naraoka⁴⁵, K. Sakamoto⁵, S. Tachibana^{3,5}, S. Watanabe⁵⁷, Y. Tsuda⁵, and Hayabusa2 initial analysis Stone team, ¹Tohoku University, Sendai 980-8578, Japan (tomoki.nakamura.a8@tohoku.ac.jp), 2NASA Johnson Space Center, 3The University of Tokyo, ⁴ELSI, Tokyo Institute of Technology, ⁵ISAS, JAXA, ⁶SOKENDAI, ⁷Arizona State University, ⁸Chiba Institute of Technology, ⁹Massachusetts Institute of Technology, ¹⁰Nagoya University, ¹¹LESIA, ¹²University of New Mexico, ¹³Ritsumeikan University, ¹⁴Guangzhou Institute of Geochemistry, CAS, ¹⁵CAS Center for Excellence in Deep Earth Science, ¹⁶JASRI/SPring-8, ¹⁷Hokkaido University, ¹⁸Brown University, ¹⁹Instituto de Astrofísica de Canarias, University of La Laguna, ²⁰The University of Aizu, ²¹University of Washington, ²²Institute for Radiation Science, Osaka University, ²³Kavli WPI, The University of Tokyo. ²⁴Materials Sciences Research Center, JAEA, ²⁵Osaka University, ²⁶Goethe University, ²⁷Ghent University, ²⁸IAS, Université Paris-Saclay, ²⁹Royal Holloway University, ³⁰Muséum National d'Histoire Naturelle, ³¹Université Grenoble Alpes, CNRS, IPAG, ³²Argonne National Laboratory, 33Kindai University, 34Kobe University, 35Kyushu University, 36Kwansei Gakuin University, 37University of Houston, ³⁸The University of Texas at Austin, ³⁹Virginia Tech., ⁴⁰National Institute for Materials Science, ⁴¹Tohoku University, ⁴²Natural History Museum, ⁴³ Kanazawa University, ⁴⁴High-Energy Accelerator Research Organization, ⁴⁵Kyushu University, ⁴⁶Planetary Science Institute, ⁴⁷Planetary Science Institute, ⁴⁸The Pennsylvania State University, ⁴⁹California State University, ⁵⁰Space Sciences Laboratory, University of California, ⁵¹IJCLab, UMR 9012 Université Paris-Saclay/CNRS, ⁵²DLR, ⁵³California Institute of Technology, 54Shizuoka University, 55Hokkaido University, 56Hiroshima University, 57Nagoya University.

Introduction: As a part of the Hayabusa2 initial analysis [1], we analyzed eighteen Ryugu "stone" samples of 1 ~ 8 mm in size: seven stones from the 1st touch down site and eleven from the 2nd touch down site. Ryugu stones were analyzed first using X-rays, UV, visible, near-infrared, mid-infrared, and muon probes for surface reflectance spectra, internal 3D structure and element distribution [2], crystal structures, and bulk composition of light elements such as C, N, and O. Measurements for magnetic, thermal, and physical properties using some stones were also performed. TOF-SIMS analysis of fluid inclusions is being continued [3]. Small particles separated from some stones were analyzed by IR-CT [4]. Based on 3D-CT images of individual stones, objects of interests were identified, separated by pFIB cutting, and exposed by polishing on the surface of epoxy disks. FE-EPMA/FE-SEM analysis was made on ~40 polished epoxy disks for chemical composition and textural observation [5-9]. FIB sections and small (~15 μm in diameter) fragments were separated from the polished surface and analyzed by TEM, STXM, XRF, and nano-CT.

Results and discussion: Eighteen stone 2D and 3D images indicate that Ryugu samples are breccias of small fragments (<~lmm in size) of basically CI chondrite mineralogy [10]. Most of the fragments are heavily altered and consists mainly of phyllosilicates, carbonates (dolomite and breunnerite), Fe sulfides and oxides, and phosphates (Fbearing hydroxyapatite); this mineralogy we call the major lithology. The mineralogy of the fragments of the major lithology shows some diversity: the abundance and shape of carbonates and phosphates differ among fragments. On the other hand, some fragments in many stones are less altered and contain anhydrous silicates such as olivine and low-Ca pyroxene of typically Mg#>97 but down to Mg# ~50, which we call the less-altered lithology.

In the less-altered lithology, the abundance of olivine and pyroxene differs between fragments and some fragments contain them up to ~ 10 vol%. Therefore, fragments with the less-altered lithology can be classified as CI2-type chondrite material. Most, but not all, fragments with the less-altered lithology contain only calcite as carbonate, phosphides (FeNi)₃P and (Fe, Ni)₂P instead of apatite, and poorly-crystallized amorphous silicates. Small ($< 20\mu m$ in size) type-I barred and porphyritic chondrules and CAI with spinel+hibonite+perovskite assemblages also occur. GEMS-like objects are abundant in the least-altered fragments. In summary, mineralogical and physical properties of Ryugu samples reveal incipient to advanced aqueous alteration in its parent asteroid.

References: [1] Tachibana S. et al. (2022) Science 375:1011–1016. [2] Tkalcec B. J. et al. (2022) this meeting. [3] Zolensky M. E. et al. (2022) this meeting. [4] Dionnet Z. et al. (2022) this meeting. [5] Harrison C. S. et al. (2022) this meeting. [6] Kikuiri M. et al. (2022) this meeting. [7] Bejach L. et al. (2022) this meeting. [8] Mikouchi T. et al. (2022) this meeting. [9] King T. J. et al. (2022) this meeting. [10] Nakamura T. et al. (2022) LPS LIII, Abstract #1423.