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Introduction: The Steen River impact structure (SRIS) is a complex crater located in NW Alberta, Canada 

(59º31’N, 117º38’W) [1–3]. The impact event occurred ~141 Ma in mixed target rocks, comprising an ~1.3 km-thick 
sequence of Devonian shales, carbonates, and evaporites, overlying Proterozoic granites and gneisses [1–4]. In 2017, 
an ~128 m-thick unit of impact melt–bearing breccia was identified in drill core intersecting crater-fill deposits on the 
side of the central uplift [5]. The matrix of the breccia is defined by a suite of high-temperature minerals, hypothesized 
by [5] to have grown in the solid state from an initially clastic matrix, in response to high post-shock temperatures. 
Here, we test the hypothesis that SRIS breccias were deposited at very high temperatures (>800 ºC), resulting in 
decomposition of CaCO3-bearing rocks to form Ca-rich minerals (pyroxene). The goal is to constrain the temperature 
at which the thermally-metamorphosed breccias were deposited and the proportion of CaCO3-bearing target rocks 
originally present in the matrix.   

Experimental Methods: Shocked SRIS granites and non-SRIS limestones were milled to fine powders (<100 
µm). Mixtures of 25:75, 50:50, and 75:25 granite-limestone were loaded into a Thermo Fisher Scientific Lindberg / 
Blue M tube furnace (University of New Brunswick) and sintered at constant pressure (P = 0.1 MPa), temperatures 
(T = 800, 900, and 1000 ºC), and oxygen fugacity (ƒO2 = QFM + 2) for the duration of 6 months. The texture, miner-
alogy, and mineral abundances of the run products were characterized using a ZEISS Sigma 300 VP field emission 
scanning electron microscope (University of Alberta) and a Bruker SENTERRA micro-Raman spectrometer (MacE-
wan University).  

Computational Methods: Theriak-Domino software [6,7] was used to construct P-T diagrams of granite-lime-
stone experiments. Bulk rock compositions were “mixed” to reflect the proportion of granite to limestone in 25:75, 
50:50, and 75:25 granite-limestone runs. Domino calculations [8] were made in the Na2O-K2O-MgO-CaO-MnO-FeO-
Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2 system using the internally-consistent thermodynamic database of [9], where pres-
sures and temperatures ranged from 0.1–1000 MPa and 700–1100 ºC, respectively.  

Results and Discussion: Experimental. Ca-rich minerals (olivine, pyroxene, pyroxenoid) occur as fine-grained 
vermicular textures mantling shocked quartz and feldspar grains (800, 900, and 1000 ºC); as patchy, poorly-formed 
grains within run products retaining clastic textures (900 and 1000 ºC); and as laths within run products that melted 
(900 and 1000 ºC). Since the breccia matrix was sintered, but not melted, we suggest SRIS breccias were deposited at 
≤800 ºC. This constraint is supported by [4], who limit the temperature of post-deposition sintering to 450 ºC < T < 
800 ºC based on U-Pb dating of accessory phases within SRIS breccias. Ca-pyroxenoid (wollastonite) lining quartz 
and feldspar grains was observed in 800 ºC runs containing <50% granite but >25% limestone (25:75 and 50:50 
granite-limestone). While these experiments lack the occurrence of Ca-pyroxene, we suggest the size of the starting 
materials was too coarse to facilitate the growth of this mineral at 800 ºC.   

Computational. Ca-silicates and -aluminosilicates are observed at P = ~0.1 MPa and T = ~800 ºC in <50% granite 
but >25% limestone models (25:75 and 50:50 granite-limestone). Assemblages include merwinite (25:75 and 50:50 
granite-limestone), melilite (åkermanite-gehlenite series; 25:75 and 50:50 granite-limestone), and olivine (monticel-
lite; 50:50 granite-limestone). Since natural and experimental Ca-bearing minerals are not in agreement with those 
modeled by Theriak-Domino, we suggest natural and experimental assemblages are not at equilibrium. We speculate 
that heterogeneity in the distribution of granite and limestone clasts is responsible for the growth of relatively Si-
saturated, rather than Si-undersaturated Ca-bearing matrix minerals.   

Future Work: These findings will inform a series of experiments that investigate the run products of very fine-
grained (<1 µm) starting materials, sintered to 450 ºC < T < 800 ºC. We hypothesize, that by decreasing the size of 
granite-limestone starting materials, while maintaining their heterogeneous distribution, Ca-pyroxene will form at 
<800 ºC temperatures.  
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