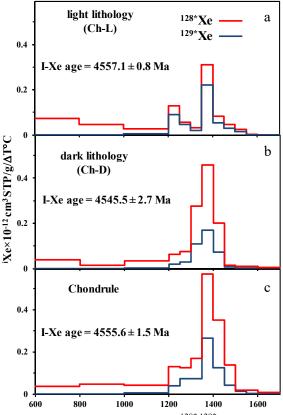
## IODINE-XENON RECORD OF THE EARLY SHOCK EVENTS ON THE CHELYABINSK LL5 CHONDRITE PARENT BODY.

O. Pravdivtseva<sup>1</sup>, A. Meshik<sup>1</sup>, V. Grokhovsky<sup>2</sup>, <sup>1</sup>McDonnell Center for the Space Sciences and Physics Department, CB 1105, Washington University, Saint Louis, MO 63130, USA(olga@physics.wustl.edu); <sup>2</sup>Institute of Physics and Technology, Ural Federal University, Ekaterinburg 620002, Russia.


Introduction: The Chelyabinsk LL meteorite consists of three distinct lithologies [1,2], indicative of genomict breccia. A light-colored lithology is LL5 material that has experienced thermal metamorphism and subsequent shock at levels near S4. The second lithology is a shock darkened LL5 material in which the darkening is caused by melt and metal-troilite veins along grain boundaries. The third lithology is an impact melt breccia that formed at ~1600°C. The U-Pb [3,4], Pb-Pb [5], Rb-Sr [6,7], Sm-Nd [1,7,8], Ar-Ar [7,9,10] and K-Ar [7] data for Chelyabinsk indicate a complex history of impacts and heating events. Here we present results of the I-Xe study of Chelyabinsk.

**Results:** The Xe isotopic composition was measured by step-wise pyrolysis in a fragment of Chelyabinsk chondrule, and in the light (Ch-L) and dark (Ch-D) Chelyabinsk lithology samples, neutron-irradiated for I-Xe dating alongside the absolute age standard Shallowater aubrite.

**Table 1.** Concentrations of Xe components in the Chelyabinsk samples (tr – trapped; fis – U-fission; \* – I-derived).

| Sample  | mg   | <sup>i</sup> Xe×10 <sup>-10</sup> , cm <sup>3</sup> STP/g |                      |                    |                    |
|---------|------|-----------------------------------------------------------|----------------------|--------------------|--------------------|
|         |      | <sup>132</sup> Xe <sub>tr</sub>                           | 132Xe <sub>fis</sub> | <sup>129*</sup> Xe | <sup>128*</sup> Xe |
| Ch-L    | 17.4 | 0.10                                                      | 0.02                 | 0.25               | 0.92               |
| Ch-D    | 28.6 | 0.80                                                      | 0.05                 | 0.22               | 0.89               |
| chondr. | 6.8  | 0.89                                                      | 0.04                 | 0.33               | 1.20               |

I-Xe system in all Chelyabinsk samples exhibits effects of shock-induced disturbance, resulting in the I-Xe isochrones and subsequent relative ages that are defined with high uncertainties. Release profiles of radiogenic <sup>128,129</sup>Xe in Ch-L indicate presence of two distinct iodine carrier phases characterized by simultaneous closure of the I-Xe system at 4557.1  $\pm$  0.8 Ma (relative to Shallowater age of 4562.4  $\pm$  0.2 Ma [11]), consistent with shock resetting rather than slow cooling after the early metamorphism on the parent body (Fig.1a). Release profiles of <sup>128,129\*</sup>Xe in the Chelyabinsk chondrule also suggest two iodine-carrier phases, although the low-temperature one is disturbed up to 1250°C (Fig.1c). I-Xe ages of Ch-L and chondrule agree within the uncertainties. The I-Xe system in these two samples was most probably reset by the same event, but it affected them to a different degree, possibly due to the smaller grain sizes in the Chelyabinsk chondrules compared to the grain sizes in its



**Figure 1**. Release profiles of Xe in the Chelyabinsk samples. Absolute I-Xe ages are calculated relative to Shallowater [11].

matrix. The I-Xe system in Ch-D was reset  $\sim 11.6$  Ma later by a higher energy shock event resulting in the redistribution of radiogenic Xe from the low temperature carrier phase and in influx of trapped Xe component. I-Xe systematics in Chelyabinsk are compatible with previously reported data for the dark and light lithologies from the LL6 St Séverin chondrite [12], suggesting common parent body origin.

Supported by NASA grants EW18 2-0053 and LARS16 2-0002.

References: [1] Galimov E.M. et al. (2013) Geochemica International 51:522–539. [2] Meteoritical Bulletin #102 (2013). [3] Popova O. et al. (2013) Science 342:1069–1073. [4] Lapen T.J. et al. (2014) LPS XLV, Abstract #2561. [5] Bouvier A. (2013) LPI Contributions 1737:3087. [6] Nakamura E. et al. (2015) LPS XLVI, Abstract #1865. [7] Righter K. et al. (2015) Meteoritics & Planetary Science 50:1790–1819. [8] Bogomolova E.S. et al. (2013) Doklady Earth Sciences 452:1034–1038. [9] Beard S.P. et al. (2014) LPS XLV, Abstract #1807. [10] Korochantseva E.V. et al. (2015) LPI Contributions 1856:5268. [11] Pravdivtseva O. et al. (2016) Geochimica et Cosmochimica Acta 201:320–330. [12] Hohenberg C.M. et al. (1981) Geochimica et Cosmochimica Acta 45:535–546.