CO3 AND CH/CB CAIS SUGGEST 10Be WAS DISTRIBUTED UNIFORMLY IN THE SOLAR NEBULA. E. T. Dunham¹, M.-C. Liu², A. T. Hertwig², S. J. Desch¹ and M. Wadhwa¹, ¹Arizona State University, Center for Meteorite Studies, Tempe AZ 85287 (email: etdunham@asu.edu), ²Dept. of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA 90095. Introduction: Studies of ¹⁰Be-¹⁰B isotope systematics in the first-formed Solar System solids (calcium-aluminum-rich inclusions, or CAIs) can provide insights into the astrophysical environment of the early Solar System. The short-lived radionuclide ¹⁰Be decays to ¹⁰B (t_{1/2}= 1.4 Ma) and is produced almost exclusively by energetic particle irradiation [1]. The most likely astrophysical sites for ¹⁰Be production are: (1) in the molecular cloud, as galactic cosmic rays (GCRs) spalled heavier nuclei, followed by ¹⁰Be homogenization as the cloud collapsed to form the solar nebula [2,3]; or (2) in the nebular disk, as solar flare high-energy particles interacted with nebular gas and solids, producing ¹⁰Be heterogeneously in space and time [4-7]. Most normal CAIs studied thus far have been from CV3 chondrites; these have initial ¹⁰Be/⁹Be ~(6-9)×10⁻⁴ [5-11], although a few with higher ¹⁰Be/⁹Be have been reported [12,13]. The few CH/CB CAIs can be calculated as far have ¹⁰Be/⁹Be like those in normal CV3 CAIs, but one CAI has a significantly higher ¹⁰Be/⁹Be ~10⁻² [14]. CAIs with Fractionation and Unknown Nuclear effects (FUN CAIs) and hibonites have lower ¹⁰Be/⁹Be~(3-5)×10⁻⁴ [7,9,15,16]. Here we report ¹⁰Be-¹⁰B systematics in normal, pristine CAIs from CO3 and CH/CB chondrites, to better constrain how and where ¹⁰Be was produced. **Methods:** Epoxy-mounted polished thick sections of CO3 chondrites Dar al Gani (DaG) 005 and DaG 027 contained six coarse-grained CAIs, and two polished mounts of the CH/CB chondrite Isheyevo contained five coarse-grained CAIs. We characterized the CAIs with the JEOL JXA-8530F electron microprobe at Arizona State University, then determined the 10 Be- 10 B isotope systematics in these 11 CAIs using the IMS-1290 secondary ion mass spectrometer (SIMS) at UCLA. Using a 1-2 nA 16 O₂- primary beam (generated by a *Hyperion-II* source [17]), we pre-sputtered a $10\times10~\mu$ m rastered square, then decreased the rastered area to $5\times5~\mu$ m for the analysis. Secondary ion intensities were measured with multiple electron multipliers (EMs) with a mass resolving power of ~2,500 in dynamic multicollection mode. A NIST 614 glass was used as a standard to determine the 9 Be/ 11 B relative sensitivity factor (RSF) and the 10 B/ 11 B instrumental mass fractionation (IMF). **Results:** CO3 CAIs. The six CO3 CAIs range in their size, mineralogy, texture, and shape: 300-830 μ m in size; coarse-grained texture with melilite ±spinel, hibonite, perovskite; rounded to irregularly fragmented in shape. The 10 Be- 10 B data for each of these CAIs define isochrons that yield a weighted average initial 10 Be- 9 Be = (8.4±1.6)×10⁻⁴ (2SE weighted, MSWD=0.3). *CH/CB (Isheyevo) CAIs.* The five Isheyevo CAIs range in their size, mineralogy, and texture: 120-290 μm in size; fine- to coarse-grained texture with melilite \pm hibonite, spine, grossite, and perovskite, all are rounded in shape. Taken together, the 10 Be- 10 B data for all five CAIs yields an initial 10 Be/ 9 Be = $(10.5\pm2.8)\times10^{-4}$ (MSWD=1.2). **Discussion/Conclusions:** The six CO3 CAIs and five CH/CB CAIs measured in this study record initial 10 Be/ 9 Be ratios similar to those in most normal CV3 CAIs, and all have the same 10 B/ 11 B initial value within error. If well-behaved 10 Be- 10 B isochrons (i.e., with MSWDs close to \sim 1) of all previously studied normal CAIs from CV3 [5-12], CR2 [18], CH/CB [14], and CO3 chondrites are considered, they yield a weighted mean initial 10 Be/ 9 Be = $(7.0\pm0.3)\times10^{-4}$ (2SE weighted). This suggests that 10 Be was distributed homogeneously in at least those regions of the solar nebula where normal CAIs formed; in this scenario, FUN CAIs (with lower 10 Be/ 9 Be) either formed in an isotopically distinct region or formed later than normal CAIs. This further indicates that 10 Be was likely produced in the molecular cloud, and was mostly homogenized during its collapse and formation of the solar nebula. If we consider this initial 10 Be/ 9 Be value as the steady-state level generated in the molecular cloud by interactions with GCRs, the GCR ion flux \sim 4.6 billion years ago in the region where our molecular cloud core was forming was about 8 times higher than present-day GCR ion flux in the solar neighborhood [3]. **Acknowledgments:** This work is supported by a NASA Earth and Space Science Fellowship (NNX16AP48H) to ETD and a NASA Emerging Worlds grant (NNX15AH41G) to MW. **References:** [1] Davis A.M. & McKeegan K.D. (2014), *Treatise on Geochemistry (2nd Ed.)*, 361. [2] Desch S.J. et al. (2004) *ApJ 602*, 528. [3] Tatischeff V. et al. (2014) *ApJ 796*, 124. [4] Jacquet E. (2019) *A&A accepted* [5] McKeegan K.D. et al. (2000) *Science 289*, 1334. [6] Sugiura N. et al. (2001) *MAPS 36*, 1397. [7] MacPherson G.J. et al. (2003) *GCA 67*, 3165. [8] Chaussidon M. et al. (2006) *GCA 70*, 224. [9] Wielandt D. et al. (2012) *ApJ 748*, 25. [10] Srinivasan G. et al. (2013) *EPSL 374*, 11. [11] Mishra R.K. & Marhas K.K. (2019) *Nature Astronomy* s41550-019-0716-0 [12] Sossi P.A. et al. (2017) *Nature Astronomy 1*, 0055. [13] Dunham E.T. et al. (2017) *Meteoritics & Planetary Science* 80:A6381 [14] Gounelle M. et al. (2013) *ApJ 763*, 33. [15] Liu M.-C. et al. (2009) *GCA 73*, 5051. [16] Fukuda K. et al. (2018) *Geochem J. 52*, 3. [17] Liu M.-C. et al. (2018) *IJMS 1*, 9 [18] Dunham E.T. et al. (2019) LPS *L*, Abstract #1928.