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Introduction: Chelyabinsk is a metal-rich LL5 chondrite [1] that has light clast-rich and dark melt-rich litholo-
gies [2,3]. Geochronology studies of Chelyabinsk result in multiple ages that have been interpreted to represent at
least eight impact events [5]. This work revisits Ar-Ar measurements of Chelyabinsk [6] for the purpose of compari-
son with other Ar-Ar studies (e.g. [7]) and multiple other ages from other systems to better understand Chelya-
binsk’s impact history.

Methods: Details of the Ar-Ar measurements for Chelyabinsk can be found in [6]. Literature geochronology re-
sults (U-Pb, Pb-Pb, Re-Os, Sm-Nd, Rb-Sr, K-Ar, Ar-Ar, and U-He; see references in [5]) of Chelyabinsk are evalu-
ated for how well they agree with one another as well as the quality of the reported ages. Ages that are based on
poor isochrons, determined by K-Ar, or on a mixture of lithologies in the Ar-Ar case, are not considered. If the ages
of one method agree independently or are in agreement with multiple methods, this is considered a high probability
to represent an impact event.

Results: Figure 1 shows the age distribution from multiple well-determined dating methods of Chelyabinsk, rep-
resented as summed Gaussians with a width proportional to the reported uncertainty. This refined impact distribution
(compare to [5]) shows impact ages at ~4560 Ma (Re-Os, Rb-Sr), ~4450 Ma (Pb-Pb, U-Pb), ~2800 Ma (Sm-Nd, Ar-
Ar), and ~30 Ma (Rb-Sr, U-He, U-Pb).

Discussion: Ar-Ar results from [6,7] agree that there is a young age 26 + 11 Ma, the best defined age from the
isotopic dating systems, meaning that many of the systems could have been disturbed by an event at ~30 Ma. They
disagree on an older age (~1800 Ma compared to ~2800 Ma), but show very similar behavior. The reason for this
discrepancy and how it affects the overall impact distribution is still being worked on, including modeling Ar diffu-
sion [11]. Three studies of Sm-Nd yield four poorly-defined and very different ages; ~300, ~2900, ~3700, ~4452 Ma
[2,5,9,5] respectively. The ~300 Ma isochron is consistent with 30 Ma. Two Rb-Sr isochrons yield ages of 150 + 58
Ma and ~4567 Ma [10]. The ~150 Ma isochron could be representative of the ~30 Ma age found in argon, the differ-
ence being an artifact of different shock effects experienced by the different systems [8]. The Pb-Pb age of 4457 + 35
Ma [12] agrees well with the U-Pb ages of apatite grains that have upper concordia ages of ~4450 Ma (4454 + 67 Ma,
4452 + 21 Ma, 4433 £ 110 Ma from [12,1,13] respectively), representing an early post-accretion impact [12]. Apatite
has a less constrained lower concordia of 559 + 180 Ma [12], which might indicate the most recent time lead was lost
from the system, and is consistent with ~30 Ma.
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