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Introduction: Carbonaceous chondrite (CC) aqueous altera-
tion appears to have been largely isochemical. Isochemical al-
teration, in turn, is sometimes used as evidence that hydrothermal
activity in the CC parent bodies did not exist. Instead, it is as-
serted that fluids did not flow despite fluid/rock ratios >1, the
presence of forces that should have induced flow, and oxygen
isotopic evidence for extensive down-temperature fluid flow [1].
The underlying assumption is that fluid flow requires dramatic
chemical alteration. Several lines of evidence call into question
this assumption.

Analogs: Low-temperature aqueous alteration of many ba-
salts in Gusev crater on Mars was nearly isochemical, with little
or no deviations from the feldspar-olivine compositional join [2].
Analog studies of low-temperature aqueous alteration of Ice-
landic basalts by flowing fluids also demonstrate nearly iso-
chemical alteration resulting in phyllosilicate-rich lithologies [3].

Permeability: A recent analysis of permeabilities in carbo-
naceous chondrites suggests that permeabilities are likely to have
been high enough to permit water flow [4]. Flow is also sug-
gested by the likelihood for capillary flow along grain boundaries
and new experiments on Murchison suggesting substantial H,O
permeability.

Modeling: We are carrying out numerical simulations for
fluid-rock interactions that constrain the conditions for chemical
alteration. Figure 1 shows one such model. There are significant
changes in mineralogy with relatively restricted changes in ele-
mental ratios normalized to initial values. Small changes in
Al/Ca and Si/Mg are similar to those among CCs. Mg/Al is ~
constant but elevated, reminiscent of trends attributed to volatil-
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